×







We sell 100% Genuine & New Books only!

An Introduction To Complex Systems Society Ecology And Nonlinear Dynamics 2nd Edition 2021 at Meripustak

An Introduction To Complex Systems Society Ecology And Nonlinear Dynamics 2nd Edition 2021 by Fieguth P., Springer

Books from same Author: Fieguth P.

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Price: ₹ 5657.00/- [ 17.00% off ]

    Seller Price: ₹ 4695.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

Orders Outside India


Add To Cart


Outside India Order Estimated Delivery Time
7-10 Business Days


  • We Deliver Across 100+ Countries

  • MeriPustak’s Books are 100% New & Original
  • General Information  
    Author(s)Fieguth P.
    PublisherSpringer
    ISBN9783030631673
    Pages463
    BindingHardback
    LanguageEnglish
    Publish YearSeptember 2021

    Description

    Springer An Introduction To Complex Systems Society Ecology And Nonlinear Dynamics 2nd Edition 2021 by Fieguth P.

    Complex Systems lie at the heart of a variety of large-scale phenomena of great significance - global warming, ice ages, water, poverty, pandemics - and this text uses these case studies as motivations and contexts to explore complex systems and related topics of nonlinear dynamics and power-law statistics. Although detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems._x000D__x000D_Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for students in technical domains such as engineering, computer science, physics, mathematics, and environmental studies._x000D__x000D_This second edition adds nine new examples, over 30 additional problems, 50 additional figures, and three new chapters offering a detailed study of system decoupling, extensive solutions to chapter problems, and a timely discussion on the complex systems challenges associated with COVID-19 and pandemics in general._x000D_ Table of contents :- 1 Introduction.- 2 Global Warming and Climate Change.- Further Reading.- 3 Systems Theory.- 3.1 Systems & Boundaries.- 3.2 Systems & Thermodynamics.- 3.3 Systems of Systems.- Case Study 3: Nutrient Flows, Irrigation, and Desertification.- Further Reading.- Sample Problems.- 4 Dynamic Systems.- 4.1 System State.- 4.2 Randomness .- 4.3 Analysis.- 4.3.1 Correlation.- 4.3.2 Stationarity.- 4.3.3 Transformations.- Case Study 4: Water Levels of the Oceans and Great Lakes.- Further Reading.- Sample Problems.- 5 Linear Systems.- 5.1 Linearity.- 5.2 Modes.- 5.3 System Coupling.- 5.4 Dynamics.- 5.5 Non-Normal Systems.- Case Study 5: System Decoupling.- Further Reading.- Sample Problems.- 6 Nonlinear Dynamic Systems - Uncoupled.- 6.1 Simple Dynamics.- 6.2 Bifurcations.- 6.3 Hysteresis and Catastrophes.- 6.4 System Behaviour near Folds.- 6.5 Overview.- Case Study 6: Climate and Hysteresis.- Further Reading.- Sample Problems.- 7 Nonlinear Dynamic Systems - Coupled.-7.1 Linearization.- 7.2 2D Nonlinear Systems.- 7.3 Limit Cycles and Bifurcations.- Case Study 7: Geysers, Earthquakes, and Limit Cycles.- Further Reading.- Sample Problems.- 8 Spatial Systems.- 8.1 PDEs.- 8.2 PDEs & Earth Systems.- 8.3 Discretization.- 8.4 Spatial Continuous-State Models.- 8.5 Spatial Discrete-State Models.- 8.6 Agent Models.- Case Study 8: Global circulation models.- Further Reading.- Sample Problems.- 9 Power Laws and Non-Gaussian Systems.- 9.1 The Gaussian Distribution 9.2 The Exponential Distribution .- 9.3 Heavy Tailed Distributions.- 9.4 Sources of Power Laws.- 9.5 Synthesis and Analysis of Power Laws.- Case Study 9: Power Laws in Social Systems.- Further Reading.- Sample Problems.- 10 Complex Systems.- 10.1 Spatial Nonlinear Models.- 10.2 Self-Organized Criticality.- 10.3 Emergence.- 10.4 Systems of Complex Systems.- Case Study 10: Complex Systems in Nature.- Further Reading.- Sample Problems.- 11 Observation & Inference.- 11.1 Forward Models.- 11.2 Remote Measurement.- 11.3 Resolution.-11.4 Inverse Problems.- Case Study 11A: Sensing- Synthetic Aperture Radar.- Case Study 11B: Inversion- Atmospheric Temperature.- Further Reading.- Sample Problems.- 12 Water.- 12.1 Ocean Acidification.- 12.2 Ocean Garbage.- 12.3 Groundwater.- Case Study 12: Satellite Remote Sensing of the Ocean.- Further Reading.- Sample Problems.- 13 Pandemics and Complex Systems.- 13.1 Pandemic Dynamics.- 13.2 Pandemic Models.- 13.3 Pandemic Anticipation.- Case Study 13: Pandemic Inverse Problems and Inference.- Further Reading.- Sample Problems (Partial Solutions in Appendix E).- 14 Concluding Thoughts.- Further Reading.- Part I Appendices.- A Matrix Algebra.- B Random Variables and Statistics.- C System Decoupling.- D Notation Overview.- E End of Chapter Solutions.- Index.



    Book Successfully Added To Your Cart