×







We sell 100% Genuine & New Books only!

Handbook of Composites from Renewable Materials Polymeric Composites 2017 Edition at Meripustak

Handbook of Composites from Renewable Materials Polymeric Composites 2017 Edition by Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler , Wiley

Books from same Author: Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler

Books from same Publisher: Wiley

Related Category: Author List / Publisher List


  • Price: ₹ 26662.00/- [ 17.00% off ]

    Seller Price: ₹ 22130.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

Orders Outside India


Add To Cart


Outside India Order Estimated Delivery Time
7-10 Business Days


  • We Deliver Across 100+ Countries

  • MeriPustak’s Books are 100% New & Original
  • General Information  
    Author(s)Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler
    PublisherWiley
    ISBN9781119223801
    Pages736
    BindingHardback
    LanguageEnglish
    Publish YearMay 2017

    Description

    Wiley Handbook of Composites from Renewable Materials Polymeric Composites 2017 Edition by Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler

    This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 6 is solely focused on the "Polymeric Composites".Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer-epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) cross-linked starch gel copolymer in wastewater treatments; study of chitosan cross-linking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues.Audience This valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries. Table of contents : - Preface xxi1 Keratin as Renewable Material to Develop Polymer Composites: Natural and Synthetic Matrices 1Flores-Hernandez C.G., Murillo-Segovia B., Martinez-Hernandez A.L. and Velasco-Santos C1.1 Introduction 11.2 Keratin 21.2.1 Feathers 51.2.2 Hair and Wool 81.2.3 Horn 91.3 Natural Fibers to Reinforce Composite Materials 111.4 Keratin, an Environmental Friendly Reinforcement for Composite Materials 111.4.1 Synthetic Matrices 111.4.1.1 Petroleum-Based Polymers Reinforced with Chicken Feathers 131.4.1.2 Synthetic Matrices Reinforced with Hair or Wool 181.4.1.3 Synthetic Matrices Reinforced with Horn 201.4.2 Natural Matrices 201.4.2.1 Natural Matrices Reinforced with Chicken Feathers 211.4.2.2 Natural Matrices Reinforced with Hair or Wool 241.5 Conclusions 25References 262 Determination of Properties in Composites of Agave Fiber with LDPE and PP Applied Molecular Simulation 31Norma-Aurea Rangel-Vazquez and Ricardo Rangel2.1 Introduction 312.1.1 Lignocellulosic Materials 312.1.1.1 Fibers 322.1.1.2 Agave 332.1.1.3 Chemical Treatment of Fibers 342.1.2 Composites 352.1.3 Polymers 352.1.3.1 Polyethylene 372.1.3.2 Polypropylene (PP) 392.1.4 Molecular Modelation 392.1.4.1 Classification 402.1.4.2 Properties 422.2 Materials and Methods 442.2.1 Geometry Optimization 442.2.2 Structural Parameters 442.2.3 FTIR 452.2.4 Molecular Electrostatic Potential Map 452.3 Results and Discussions 482.3.1 Geometry Optimization 482.3.2 Deacetylation of Agave Fiber 492.3.3 Structural Parameters 502.3.4 FTIR 502.3.5 Molecular Electrostatic Potential Map (MESP) 542.4 Conclusions 54References 553 Hydrogels in Tissue Engineering 59Luminita Ioana Buruiana and Silvia Ioan3.1 Introduction 593.2 Classification of Hydrogels 603.3 Methods of Hydrogels Preparation 613.4 Hydrogels Characterization 633.4.1 Mechanical Properties 643.4.2 Chemical-Physical Analysis 643.4.3 Morphological Characterization 643.4.4 Swelling Behavior 653.4.5 Rheology Measurements 653.5 Hydrogels Applications in Biology and Medicine 663.5.1 Hydrogel Scaffolds in Tissue Engineering 663.5.2 Hydrogels in Drug Delivery Systems 703.6 Concluding Remarks 73References 744 Smart Hydrogels: Application in Bioethanol Production 79Lucinda Mulko, Edith Yslas, Silvestre Bongiovanni Abel, Claudia Rivarola, Cesar Barbero and Diego Acevedo4.1 Hydrogels 794.2 History of Hydrogels 804.3 The Water in Hydrogels 814.4 Classifications of Hydrogels 814.5 Synthesis 824.6 Hydrogels Synthesized by Free Radical Polymerization 834.7 Monomers 844.8 Initiators 844.9 Cross-Linkers 844.10 Hydrogel Properties 854.11 Mechanical Properties 874.12 Biocompatible Properties 874.13 Hydrogels: Biomedical Applications 884.14 Techniques and Supports for Immobilization 894.15 Entrapment 894.16 Covalent Binding 904.17 Cross-Linking 914.18 Adsorption 914.19 Hydrogel Applications in Bioethanol Production 924.20 Classification of Biofuels 924.21 Ethanol Properties 934.22 Ethanol Production 954.23 Feedstock Pretreatment 954.24 Liquefaction and Saccharification Reactions 974.25 Fermentation Process 974.26 Continuous or Discontinuous Process? 984.27 Simultaneous Saccharification and Fermentation (SSF) Processes 984.28 Yeast and Enzymes Immobilized 99References 1005 Principle Renewable Biopolymers and Their Biomedical Applications 107?layda Duru, Oznur Demir O?uz, Hayriye Oztatl?, Duygu Ceren Ar?kfidan, Hatice Kaya, Elif Donmez and Duygu Ege5.1 Collagen 1075.2 Elastin 1115.3 Silk Fibroin 1145.4 Chitosan 1165.5 Chondroitin Sulfate 1195.6 Cellulose 1215.7 Hyaluronic Acid 1235.8 Poly(L-lysine) 126References 1286 Application of Hydrogel Biocomposites for Multiple Drug Delivery 139S.J. Owonubi, S.C. Agwuncha, E. Mukwevho, B.A. Aderibigbe, E.R. Sadiku, O.F. Biotidara and K. Varaprasad6.1 Introduction 1406.2 Sustained Drug Release Systems 1426.3 Controlled Release Systems 1436.3.1 Half-Life of the Drug Formulation 1436.3.2 Absorption 1436.3.3 Metabolism 1436.3.4 Dosage Size 1446.3.5 pH Stability and Aqueous Stability of the Drug Formulation 1446.3.6 Barrier Co-Efficient 1446.3.7 Stability 1446.4 Polymeric Drug Delivery Devices 1466.5 Multiple Drug Delivery Systems 1476.5.1 Supramolecules and In Situ-Forming Hydrogels 1496.5.2 Layer-By-Layer Assembly 1506.5.3 Interpenetrating Polymer Networks (IPNs) 1506.5.4 Application of Hydrogels for Multiple Drug Delivery 1516.5.5 Cancer Treatments 1516.5.6 Diabetes Treatments 1526.6 Tissue Engineering 1536.6.1 Self-Healing 1546.6.2 Molecular Sensing 1556.7 Conclusion 155References 1557 Non-Toxic Holographic Materials (Holograms in Sweeteners) 167Arturo Olivares-Perez7.1 Introduction 1677.2 Sugars as Holographic Recording Medium 1687.2.1 Classification and Nomenclature 1687.2.2 Monosaccharides/Glucose and Fructose 1697.2.2.1 Glucose 1697.2.2.2 Fructose 1717.2.2.3 Disaccharides Sucrose 1717.2.2.4 Polysaccharides, Pectins 1747.2.2.5 Sweeteners Corn Syrup 1757.3 Photosensitizers 1767.3.1 Dyes 1777.3.2 Dyes as Sensitizers 1777.4 Sucrose Preparation and Film Generation 1797.4.1 UV-Visible Spectral Analysis 1807.4.2 Replication of Holographic Gratings is Sucrose 1817.4.2.1 Holographic Code 1817.4.2.2 Soft Mask 1817.4.2.3 Thermosensitive Properties Through Mask 1817.4.2.4 Replication 1827.4.2.5 Diffraction Efficiency 1837.4.3 Sucrose With Dyes 1857.4.3.1 Sugar UV-Visible Spectral Analysis 1857.4.3.2 Holographic Replicas 1867.4.3.3 DE Sugar Tartrazine and Erioglaucine Dye 1877.5 Corn Syrup 1887.5.1 Holographic Replicas of Low and High Frequency 1897.5.2 DE Corn Syrup 1917.6 Hydrophobic Materials 1927.6.1 Hydrophobic Mixture of Pectin Sucrose and Vanilla 1927.6.2 UV-Visible Spectral Analysis 1927.6.3 Holographic Replicas 1927.6.4 DE Hydrophobic Films PSV 1937.7 PSV with Dyes 1947.7.1 UV-Visible Spectral Analysis 1947.7.2 DE Films PSV and Erioglaucine 1947.8 Pineapple Juice as Holographic Recording Material 1957.8.1 Characterization of Pineapple Juice 1967.8.2 Generation of Pineapple Films 1967.8.3 Replication Technique 1967.8.4 DE Pineapple Film 1967.9 Holograms Made with Milk 1987.9.1 Low-Fat Milk Tests 1987.9.2 DE Milk Gratings 1987.9.2.1 Gravity Technique 1987.9.2.2 Spinner Technical 1997.10 Conclusions 200Acknowledgements 200References 2008 Bioplasitcizer Epoxidized Vegetable Oils-Based Poly(Lactic Acid) Blends and Nanocomposites 205Buong Woei Chieng, Nor Azowa Ibrahim and Yuet Ying Loo8.1 Introduction 2058.2 Vegetable Oils 2078.3 Expoxidation of Vegetable Oils 2098.4 Poly(lactic acid) 2118.5 Poly(lactic acid)/Epoxidized Vegetable Oil Blends 2138.5.1 Poly(lactic acid)/Epoxidized Palm Oil Blend 2138.5.2 Poly(lactic acid)/Epoxidized Soybean Oil Blend 2178.5.3 Poly(lactic acid)/Epoxidized Sunflower Oil Blend 2198.5.4 Poly(lactic acid)/Epoxidized Jatropha Oil Blend 2208.6 Polymer/Epoxidized Vegetable Oil Nanocomposites 2238.7 Summary 227References 2279 Preparation, Characterization, and Adsorption Properties of Poly(DMAEA) - Cross-Linked Starch Gel Copolymer in Wastewater 233Sudhir Kumar Saw9.1 Introduction 2339.2 Experimental Procedure 2379.2.1 Materials 2379.2.2 Instrumentation 2379.2.3 Preparation of Cross-Linked Starch Gel 2389.2.4 Preparation of Poly(DMAEA) - Cross-Linked Starch Gel Graft Copolymer 2389.2.5 Determination of Nitrogen 2399.2.6 Experimental Process of Removal of Heavy Metal Ions 2399.2.7 Removal of Dyes 2409.2.8 Recovery of the Prepared Copolymer 2409.3 Results and Discussion 2409.3.1 Effect of pH 2409.3.2 Effect of Extent of Grafting on Metal Removal 2429.3.3 Effect of Adsorbent Dose Used 2439.3.4 Effect of Treatment Time on the Metal Removal 2439.3.5 Effect of Agitation Speed 2449.3.6 Effect of Temperature 2459.3.7 Recovery of Starch 2479.3.8 Removal of Dyes 2479.3.9 Adsorption Kinetics 2489.3.10 Adsorption Isotherm 2499.4 Conclusions 250Acknowledgement 251References 25110 Study of Chitosan Cross-Linking Genipin Hydrogels for Absorption of Antifungal Drugs Using Molecular Modeling 255Norma Aurea Rangel-Vazquez10.1 Introduction 25510.1.1 Polymers 25510.1.1.1 Properties 25610.1.2 Natural Polymers 25710.1.2.1 Chitosan 25810.1.3 Hydrogels 26010.1.3.1 Applications 26110.1.4 Antifungals 26110.1.4.1 Classification 26110.1.4.2 Fluconazole 26210.1.4.3 Voriconazole 26310.1.4.4 Ketoconazole 26310.1.5 Molecular Modeling 26410.2 Methodology 26510.2.1 Geometry Optimization ( G) 26510.2.2 Bond Lengths 26510.2.3 FTIR 26710.2.4 MESP 26910.3 Results and Discussions 26910.3.1 Gibbs Free Energy 26910.3.2 Bond Lengths 27010.3.3 FTIR 27110.3.4 MESP 27410.3.5 HOMO/LUMO Orbitals 27510.5.4 Conclusions 281References 28211 Pharmaceutical Delivery Systems Composed of Chitosan 285Livia N. Borgheti-Cardoso, Fabiana T.M.C. Vicentini, Marcilio S.S. Cunha Filho and Guilherme M. Gelfuso11.1 Introduction 28511.2 Chitosan Micro- and Nanoparticles 28611.2.1 Oral Applications 28711.2.2 Topical Formulations 28811.2.3 Ocular Delivery Systems 28911.3 Bioadhesive Chitosan Hydrogels 29111.3.1 Ocular Gel Formulations 29211.3.2 Topical Formulations 29311.4 Chitosan Topical/Transdermal Films 29511.5 Chitosan as Coating Material to Produce Lipid Capsules, Liposomes, Metallic and Magnetic Nanoparticles 29611.6 Oral Beads Based on Chitosan for Controlled Delivery of Drugs 29811.7 Conclusion 300Acknowledgement 300References 30012 Eco-Friendly Polymers for Food Packaging 309Sweetie R. Kanatt, Shobita. R. Muppalla and S.P. Chawla12.1 Introduction 30912.2 Sources of Biopolymers 31112.2.1 Polymers Extracted from Biomass 31112.2.2 Polysaccharides 31212.2.2.1 Starch 31212.2.2.2 Corn Starch 31312.2.2.3 Cassava Starch 31412.2.2.4 Potato Starch 31412.2.2.5 Konjac Glucomannan 31412.2.2.6 Starch Modifications 31412.2.3 Cellulose 31512.2.3.1 Cellulose Derivatives 31612.2.4 Gums 31612.2.4.1 Guar Gum 31612.2.4.2 Locust Bean Gum 31712.2.4.3 Gum Arabic 31812.2.4.4 Pectin 31812.2.4.5 Chitin and Chitosan 31912.2.5 Proteins 31912.2.5.1 Zein 32012.2.5.2 Wheat Gluten 32112.2.5.3 Soy Protein 32112.2.5.4 Whey Protein and Casein 32112.2.5.5 Collagen 32212.2.6 Lipids 32212.2.7 Polymers Obtained from Microbial Sources 32312.2.7.1 Agar 32312.2.7.2 Alginate 32312.2.7.3 Carrageenan 32412.2.7.4 Gellan 32412.2.7.5 Pullulan 32512.2.7.6 Xanthan 32512.2.7.7 Bacterial Cellulose 32612.2.7.8 Polyhydroxyalkonates (PHA) 32612.2.8 Polymers Synthesized from Bio-Derived Monomers 32612.2.8.1 Polylactic Acid (PLA) 32612.3 Properties of Biopolymer Packaging Films 32712.3.1 Physical Properties 32712.3.1.1 Permeability 32712.3.1.2 Oxygen Transmission Rate (OTR) 32812.3.1.3 Water Vapor Transmission Rate (WVTR) 32912.3.1.4 Carbon Dioxide Transmission Rate (CO2TR) 33012.3.2 Mechanical Properties 33012.3.3 Thermal Properties 33112.3.4 Degradation 33212.3.4.1 Biodegradation 33212.4 Composite Films 33312.5 Bionanocomposites 33512.6 Methods for Film Processing 33512.6.1 Casting 33612.6.2 Extrusion 33612.6.3 Injection Molding 33612.6.4 Blow Molding 33712.6.5 Thermoforming 33712.6.6 Foamed Products 33712.7 Applications of Biopolymers in Food Packaging 33812.7.1 Biodegradable Packaging Material 33812.7.2 Active Packaging 33812.7.3 Biopolymers as Edible Packaging 33912.7.3.1 Edible Coating 33912.7.3.2 Fruits and Vegetables 34012.7.3.3 Flesh Foods 34112.7.3.4 Seafoods 34112.7.3.5 Meat and Meat Products 34112.7.3.6 Eggs 34112.7.3.7 Nuts 34212.7.3.8 Dairy Products 34212.7.4 Edible Films 34312.7.4.1 Fruits and Vegetables 34312.7.4.2 Flesh Foods 34312.7.5 Intelligent Packaging 34412.8 Conclusion and Future Prospects 344References 34513 Influence of Surface Modification on the Thermal Stability and Percentage of Crystallinity of Natural Abaca Fiber 353Basavaraju Bennehalli, Srinivasa Chikkol Venkateshappa, Rama Devi Punyamurthy, Dhanalakshmi Sampathkumar and Raghu Patel Gowdru Rangana Gowda13.1 Introduction 35313.2 Materials and Methods 35513.2.1 Materials 35513.2.2 Alkali Treatment of Abaca Fiber 35513.2.3 Acrylic Acid Treatment of Abaca Fiber 35613.2.4 Acetylation of Abaca Fiber 35613.2.5 Benzoylation of Abaca Fiber 35613.2.6 Permanganate Treatment of Abaca Fiber 35613.2.7 Fourier Transform Infrared Spectroscopy (FTIR) 35613.2.8 Thermogravimetric Analysis (TGA) 35613.2.9 X-Ray Diffraction Analysis (XRD) 35713.3 Results and Discussion 35713.3.1 Chemical Treatment of Fibers 35713.3.2 IR Spectra of Fibers 35813.3.3 Thermogravimetric Analysis (TGA) 36113.3.4 X-Ray Diffraction Analysis (XRD) 36913.4 Conclusions 373References 37314 Influence of the Use of Natural Fibers in Composite Materials Assessed on a Life Cycle Perspective 377Hugo Carvalho, Ana Raposo, Ines Ribeiro, Paulo Pecas, Arlindo Silva and Elsa Henriques14.1 Introduction 37714.2 Composite Materials: An Overview 37914.2.1 Composites Design 38014.2.2 Fiber-Reinforced Composites and Natural Fibers 38014.2.3 World Production of Natural Fibers 38114.3 Methodology 38214.4 Case Study: Bonnet Component 38314.4.1 Boundary Conditions and Loading 38414.4.2 Materials 38414.4.3 Technical Requirements 38514.4.4 Design Specifications 38714.5 Life Cycle Stages 38914.5.1 Raw Material Acquisition 38914.5.2 Transport 38914.5.3 Manufacturing Phase 39014.5.4 Use Phase 39114.5.5 End of Life Phase 39114.6 Results 39114.6.1 Economic Dimension Evaluation 39114.6.2 Environmental Dimension Evaluation 39214.6.3 Technical Results 39214.6.4 Global Evaluation 39414.6.4.1 Sensitivity Analysis to the Life Cycle Stages 39414.7 Conclusion 395References 39615 Plant Polysaccharides Blended Ionotropically Gelled Alginate Multiple Unit Systems for Sustained Drug Release 399Dilipkumar Pal and Amit Kumar Nayak15.1 Introduction 39915.2 Plant Polysaccharide in Sustained Release Drug Delivery 40115.3 Alginates and Their Ionotropic Gelation 40215.4 Various Plant Polysaccharides-Blended Ionotropically-Gelled Alginate Microparticles/Beads 40615.4.1 Locust Bean Bum-Alginate Blends 40615.4.2 Gum Arabic-Alginate Blends 41115.4.3 Tamarind Seed Polysaccharide-Alginate Blends 41215.4.4 Okra Gum-Alginate Blends 41715.4.5 Fenugreek Seed Mucilage-Alginate Blends 42115.4.6 Ispaghula Husk Mucilage-Alginate Blends 42315.4.7 Aloe Vera Gel-Alginate Blends 42415.4.8 Sterculia Gum-Alginate Blends 42515.4.9 Jackfruit Seed Starch-Alginate Blends 42815.4.10 Potato Starch-Alginate Blends 43015.5 Conclusion 431References 43116 Vegetable Oil-Based Polymer Composites: Synthesis, Properties and Their Applications 441Shubhalakshmi Sengupta and Dipa Ray16.1 Introduction 44116.2 Vegetable Oils 44216.2.1 Composition and Structure of Vegetable Oils 44216.2.2 Properties of Vegetable Oils 44316.3 Vegetable Oils Used for Polymers and Composites 44416.3.1 Synthesis of Polymeric Materials from Vegetable Oils 44416.3.2 Modification of Vegetable Oils and Their Use in Composites 44716.3.2.1 Epoxidized Vegetable Oils and Their Composites 44716.3.2.2 Maleated Vegetable Oils and Their Composites 45416.3.3 Cationic Polymerization of Vegetable Oils and Their Composites 46016.4 Free Radical Polymerization of Vegetable Oils and Their Composites 46516.5 Application Possibilities and Future Directions 465References 46617 Applications of Chitosan Derivatives in Wastewater Treatment 471Taslim U. Rashid, Md. Sazedul Islam, Sadia Sharmeen, Shanta Biswas, Asaduz Zaman, M. Nuruzzaman Khan, Abul K. Mallik, Papia Haque and Mohammed Mizanur Rahman17.1 Introduction 47117.2 Chitin and Chitosan 47317.2.1 Sources of Chitin and Chitosan 47417.2.2 Extraction of Chitosan 47417.2.3 Properties of Chitosan 47517.2.3.1 Degradation 47717.2.3.2 Molecular Weight 47717.2.3.3 Solvent Properties 47717.2.3.4 Mechanical Properties 47717.2.3.5 Adsorption 47817.2.3.6 Cross-Linking Properties of Chitosan 47817.2.3.7 Antioxidant Properties 47917.2.4 Applications of Chitosan 48017.3 Chitosan Derivatives in Wastewater Treatment 48117.3.1 Carboxymethyl-Chitosan (CMC) 48117.3.2 Ethylenediaminetetraaceticacid (EDTA) and Diethylenetriaminepentaacetic Acid (DTPA) Modified Chitosan 48317.3.3 Triethylene-Tetramine Grafted Magnetic Chitosan (Fe3O4-TETA-CMCS) 48417.3.4 Carboxymethyl-Polyaminate Chitosan (DETA-CMCHS) 48617.3.5 Tetraethylenepentamine (TEPA) Modified Chitosan (TEPA-CS) 48717.3.6 Ethylenediamine Modified Chitosan (EDA-CS) 48817.3.7 Epichlorohydrin Cross-Linked Succinyl Chitosan (SCCS) 48917.3.8 N-(2 -Hydroxy-3 Mercaptopropyl)-Chitosan 49017.3.9 Epichlorohydrin Cross-Linked Chitosan (ECH-Chitosan) 49017.3.10 Quaternary Chitosan Salt (QCS) 49217.3.11 Magnetic Chitosan-Isatin Schiff 's Base Resin (CSIS) 49217.3.12 Chitosan-Fe(III) Hydrogel 49317.4 Adsorption of Heavy Metals on Chitosan Composites from Wastewater 49317.4.1 -Fe2O3 impregnated Chitosan Beads With As(III) as Imprinted Ions 49317.4.2 Chitosan/Cellulose Composites 49417.4.3 Chitosan/Clinoptilolite Composite 49517.4.4 Chitosan/Sand Composite 49617.4.5 Chitosan/Bentonite Composite 49617.4.6 Chitosan/Cotton Fiber 49717.4.7 Magnetic Thiourea-Chitosan Imprinted Ag+ 49817.4.8 Nano-Hydroxyapatite Chitin/Chitosan Hybrid Biocomposites 49817.5 Adsorption of Dyes on Chitosan Composites from Wastewater 49917.5.1 Fe2O3/Cross-Linked Chitosan Adsorbent 49917.5.2 Chitosan-Lignin Composite 50017.5.3 Chitosan-Polyaniline/ZnO Hybrid Composite 50117.5.4 Coalesced Chitosan Activated Carbon Composite 50217.5.5 Chitosan/Clay Composite 50217.6 Conclusion 504References 50418 Novel Lignin-Based Materials as Products for Various Applications 519?ukasz Klapiszewski and Teofil Jesionowski18.1 Lignin - A General Overview 51918.1.1 A Short History 51918.1.2 Synthesis and Structural Aspects 52118.1.3 Types of Lignin 52318.1.4 Applications of Lignin 52818.2 Lignin/Silica-Based Hybrid Materials 53118.3 Combining of Lignin and Chitin 53518.4 Lignin-Based Products as Functional Materials 540References 54319 Biopolymers from Renewable Resources and Thermoplastic Starch Matrix as Polymer Units of Multi-Component Polymer Systems for Advanced Applications 555Carmen-Alice Teac? and Ruxanda Bodirl?u19.1 Introduction 55519.2 Thermoplastic Starch Matrix and its Application for Advanced Composite Materials 55719.3 Biopolymers from Sustainable Renewable Sources 55819.3.1 Chitin 55819.3.2 Wheat Straw 55919.3.3 Spruce Bleached Kraft Pulp 55919.4 Thermoplastic Starch as Polymer Matrix and Biopolymers from Renewable Resources for Composite Materials 56019.4.1 Obtainment 56019.4.1.1 Materials 56119.4.1.2 Preparation of Composites Based on Plasticized Starch and Biopolymers with Addition of Vegetal Fillers 56119.4.2 Investigation Methods and Properties 56219.4.2.1 FTIR Spectroscopy Analysis 56219.4.2.2 Water Uptake Measurements 56319.4.2.3 Optical Properties 56719.4.2.4 Evaluation of the Fillers' Particle Size 57019.5 Conclusions 570Acknowledgements 572References 57220 Chitosan Composites: Preparation and Applications in Removing Water Pollutants 577Mohammad Reza Ganjali, Morteza Rezapour, Farnoush Faridbod and Parviz Norouzi20.1 Introduction to Chitosan 57720.1.1 Other Derivatives of Chitin 58020.1.2 Properties of Chitosan 58020.1.3 Modification and Derivatization of Chitosan 58120.2 Chitosan Composites 58320.2.1 Activated Clay-Chitosan (ACC) Composites 58320.2.1.1 Attapulgite Clay-Nanocomposite 58320.2.1.2 Composites of Bentonite, Montmorillonite, and Other Types of Clay 58420.2.2 Alginate-Chitosan (AC) Composites 58920.2.3 Cellulose-Chitosan (CC) Composites 58920.2.3.1 Cotton Fiber-Chitosan Composites 59120.2.4 Ceramic Alumina-Chitosan Composites 59220.2.5 Hydroxyapatite-Chitosan Composites 59620.3 Palm Oil Ash-Chitosan Composites 59820.4 Perlite-Chitosan Composites 59820.5 Polymer-Chitosan Composites 59920.5.1 Polyurethane-Chitosan Composites 59920.5.2 Polyvinyl Alcohol-Chitosan Composites 60220.5.3 Polyacrylamide-Chitosan Composites 60520.5.4 Polymethylmethacrylate-Chitosan Composites 60720.5.5 Poly(methacrylic acid)-Chitosan Composites 61120.5.6 Polyvinyl Chloride-Chitosan Composites 61220.5.7 Molecular Imprinted-Chitosan Composites 61320.6 Sand-Chitosan Composites 61920.7 Magnetic Nano-Adsorbents or Micro-Adsorbent 61920.7.1 Chitosan-Based Magnetic Particles 62020.7.2 Modified-Chitosan or Chitosan-Polymer Based Magnetic Composites 62720.7.3 Magnetic Chitosan-Carbon Composites 64520.7.4 Magnetic Composites of Chitosan with Inorganic Compounds 649References 65221 Recent Advances in Biopolymer Composites for Environmental Issues 673Mazhar Ul Islam, Shaukat Khan, Muhammad Wajid Ullah and Joong Kon Park21.1 Introduction 67321.2 Historical Background 67421.3 Some Important Biopolymers 67721.3.1 Bio-Cellulose 67821.3.2 Xanthan and Dextran 67921.3.3 Poly(hydroxyalkanoates) 68021.3.4 Polylactide 68021.3.5 Poly(trimethylene terephthalate) 68121.4 Biopolymer Composites 68121.5 Biodegradability of Biopolymers: An Important Feature for Addressing Environmental Concerns 68221.6 Environmental Aspects of Biopolymers and Biopolymer Composites 68421.6.1 Catalytic Degradation of Contaminants 68421.6.2 Adsorption of Pollutants 68521.6.3 Magnetic Composites 68621.6.4 Pollutant Sensors 68621.7 Future Prospects 686Acknowledgement 687References 687Index 693show more



    Book Successfully Added To Your Cart