×







We sell 100% Genuine & New Books only!

Statistical Thermodynamics For Chemists And Biochemists 1992 Edition at Meripustak

Statistical Thermodynamics For Chemists And Biochemists 1992 Edition by A. Ben-Naim , Kluwer Academic

Books from same Author: A. Ben-Naim

Books from same Publisher: Kluwer Academic

Related Category: Author List / Publisher List


  • Price: ₹ 8266.00/- [ 11.00% off ]

    Seller Price: ₹ 7357.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

Orders Outside India


Add To Cart


Outside India Order Estimated Delivery Time
7-10 Business Days


  • We Deliver Across 100+ Countries

  • MeriPustak’s Books are 100% New & Original
  • General Information  
    Author(s)A. Ben-Naim
    PublisherKluwer Academic
    ISBN9780306438486
    Pages693
    BindingHardback
    LanguageEnglish
    Publish YearFebruary 1992

    Description

    Kluwer Academic Statistical Thermodynamics For Chemists And Biochemists 1992 Edition by A. Ben-Naim

    This book was planned and written with one central goal in mind: to demonstrate that statistical thermodynamics can be used successfully by a broad group of scientists ranging from chemists through biochemists to biologists who are not and do not intend to become specialists in statistical thermodynamics. The book is addressed mainly to gradu­ ate students and research scientists interested in designing experiments the results of which may be interpreted at the molecular level or in interpreting such experimental results. It is not addressed to those who intend to practice statistical thermodynamics per se. With this goal in mind I have expended a great deal of effort to make the book clear readable and I hope enjoyable. This does not necessarily mean that the book as a whole is easy to read. The first four chapters are very detailed. The last four become progressively more difficult to read for several reasons. First presuming that the reader has already acquired familiarity with the methods and arguments presented in the first part I felt that similar arguments could be skipped later on leaving the details to be filled in by the reader. Second the systems themselves become progressively more com­ plicated as we proceed toward the last chapter. Table of contents : 1 Introduction.- 1.1 Signals Coding and Compression.- 1.2 Optimality.- 1.3 How to Use this Book.- 1.4 Related Reading.- I Basic Tools.- 2 Random Processes and Linear Systems.- 2.1 Introduction.- 2.2 Probability.- 2.3 Random Variables and Vectors.- 2.4 Random Processes.- 2.5 Expectation.- 2.6 Linear Systems.- 2.7 Stationary and Ergodic Properties.- 2.8 Useful Processes.- 2.9 Problems.- 3 Sampling.- 3.1 Introduction.- 3.2 Periodic Sampling.- 3.3 Noise in Sampling.- 3.4 Practical Sampling Schemes.- 3.5 Sampling Jitter.- 3.6 Multidimensional Sampling.- 3.7 Problems.- 4 Linear Prediction.- 4.1 Introduction.- 4.2 Elementary Estimation Theory.- 4.3 Finite-Memory Linear Prediction.- 4.4 Forward and Backward Prediction.- 4.5 The Levinson-Durbin Algorithm.- 4.6 Linear Predictor Design from Empirical Data.- 4.7 Minimum Delay Property.- 4.8 Predictability and Determinism.- 4.9 Infinite Memory Linear Prediction.- 4.10 Simulation of Random Processes.- 4.11 Problems.- II Scalar Coding.- 5 Scalar Quantization I.- 5.1 Introduction.- 5.2 Structure of a Quantizer.- 5.3 Measuring Quantizer Performance.- 5.4 The Uniform Quantizer.- 5.5 Nonuniform Quantization and Companding.- 5.6 High Resolution: General Case.- 5.7 Problems.- 6 Scalar Quantization II.- 6.1 Introduction.- 6.2 Conditions for Optimality.- 6.3 High Resolution Optimal Companding.- 6.4 Quantizer Design Algorithms.- 6.5 Implementation.- 6.6 Problems.- 7 Predictive Quantization.- 7.1 Introduction.- 7.2 Difference Quantization.- 7.3 Closed-Loop Predictive Quantization.- 7.4 Delta Modulation.- 7.5 Problems.- 8 Bit Allocation and Transform Coding.- 8.1 Introduction.- 8.2 The Problem of Bit Allocation.- 8.3 Optimal Bit Allocation Results.- 8.4 Integer Constrained Allocation Techniques.- 8.5 Transform Coding.- 8.6 Karhunen-Loeve Transform.- 8.7 Performance Gain of Transform Coding.- 8.8 Other Transforms.- 8.9 Sub-band Coding.- 8.10 Problems.- 9 Entropy Coding.- 9.1 Introduction.- 9.2 Variable-Length Scalar Noiseless Coding.- 9.3 Prefix Codes.- 9.4 Huffman Coding.- 9.5 Vector Entropy Coding.- 9.6 Arithmetic Coding.- 9.7 Universal and Adaptive Entropy Coding.- 9.8 Ziv-Lempel Coding.- 9.9 Quantization and Entropy Coding.- 9.10 Problems.- III Vector Coding.- 10 Vector Quantization I.- 10.1 Introduction.- 10.2 Structural Properties and Characterization.- 10.3 Measuring Vector Quantizer Performance.- 10.4 Nearest Neighbor Quantizers.- 10.5 Lattice Vector Quantizers.- 10.6 High Resolution Distortion Approximations.- 10.7 Problems.- 11 Vector Quantization II.- 11.1 Introduction.- 11.2 Optimality Conditions for VQ.- 11.3 Vector Quantizer Design.- 11.4 Design Examples.- 11.5 Problems.- 12 Constrained Vector Quantization.- 12.1 Introduction.- 12.2 Complexity and Storage Limitations.- 12.3 Structurally Constrained VQ.- 12.4 Tree-Structured VQ.- 12.5 Classified VQ.- 12.6 Transform VQ.- 12.7 Product Code Techniques.- 12.8 Partitioned VQ.- 12.9 Mean-Removed VQ.- 12.10 Shape-Gain VQ.- 12.11 Multistage VQ.- 12.12 Constrained Storage VQ.- 12.13 Hierarchical and Multiresolution VQ.- 12.14 Nonlinear Interpolative VQ.- 12.15 Lattice Codebook VQ.- 12.16 Fast Nearest Neighbor Encoding.- 12.17 Problems.- 13 Predictive Vector Quantization.- 13.1 Introduction.- 13.2 Predictive Vector Quantization.- 13.3 Vector Linear Prediction.- 13.4 Predictor Design from Empirical Data.- 13.5 Nonlinear Vector Prediction.- 13.6 Design Examples.- 13.7 Problems.- 14 Finite-State Vector Quantization.- 14.1 Recursive Vector Quantizers.- 14.2 Finite-State Vector Quantizers.- 14.3 Labeled-States and Labeled-Transitions.- 14.4 Encoder/Decoder Design.- 14.5 Next-State Function Design.- 14.6 Design Examples.- 14.7 Problems.- 15 Tree and Trellis Encoding.- 15.1 Delayed Decision Encoder.- 15.2 Tree and Trellis Coding.- 15.3 Decoder Design.- 15.4 Predictive Trellis Encoders.- 15.5 Other Design Techniques.- 15.6 Problems.- 16 Adaptive Vector Quantization.- 16.1 Introduction.- 16.2 Mean Adaptation.- 16.3 Gain-Adaptive Vector Quantization.- 16.4 Switched Codebook Adaptation.- 16.5 Adaptive Bit Allocation.- 16.6 Address VQ.- 16.7 Progressive Code Vector Updating.- 16.8 Adaptive Codebook Generation.- 16.9 Vector Excitation Coding.- 16.10 Problems.- 17 Variable Rate Vector Quantization.- 17.1 Variable Rate Coding.- 17.2 Variable Dimension VQ.- 17.3 Alternative Approaches to Variable Rate VQ.- 17.4 Pruned Tree-Structured VQ.- 17.5 The Generalized BFOS Algorithm.- 17.6 Pruned Tree-Structured VQ.- 17.7 Entropy Coded VQ.- 17.8 Greedy Tree Growing.- 17.9 Design Examples.- 17.10 Bit Allocation Revisited.- 17.11 Design Algorithms.- 17.12 Problems.



    Book Successfully Added To Your Cart