×







We sell 100% Genuine & New Books only!

Employment Law Fourth Edition at Meripustak

Employment Law Fourth Edition by Richard Carlson, WOLTERS KLUWER

Books from same Author: Richard Carlson

Books from same Publisher: WOLTERS KLUWER

Related Category: Author List / Publisher List


  • Price: ₹ 21057.00/- [ 0.00% off ]

    Seller Price: ₹ 21057.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

Orders Outside India


Add To Cart


Outside India Order Estimated Delivery Time
7-10 Business Days


  • We Deliver Across 100+ Countries

  • MeriPustak’s Books are 100% New & Original
  • General Information  
    Author(s)Richard Carlson
    PublisherWOLTERS KLUWER
    ISBN9781454892656
    Pages962
    BindingPaperback
    LanguageEnglish
    Publish YearAugust 2018

    Description

    WOLTERS KLUWER Employment Law Fourth Edition by Richard Carlson

    Employment Law introduces students to major issues and problems in labor policy and the practice of employment law, moving from one practical or policy area to the next, recalling and expanding students' understanding or basic legal principles in particular contexts, and introducing laws specially designed for the protection of employees and other individual workers._x000D__x000D__x000D__x000D_Updates to the Fourth Edition: _x000D__x000D_Materials current through early 2018 and the early Trump Administration Updated materials on employee status and joint employers in the sharing and gig economy New materials on interns and other student workers proof and rebuttal of mixed motive discrimination on the basis of sexual identity and orientation the "personal comfort" doctrine in workers' compensation law testing for prescription drugs and "direct observation" rules Employee "concerted action" in "dealing" with employer, including use of social media Updates on the impact of the Affordable Care Act on employee benefit plans the impact of Marijuana legal reform employer electronic surveillance of employees Developments in the law of tortious interference_x000D_ _x000D_ Preface xxi_x000D_ _x000D_ _x000D_ Part 1 Silicon Photovoltaics 1_x000D_ _x000D_ _x000D_ 1 Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics 3_x000D_ Santosh K. Kurinec, Charles Bopp and Han Xu_x000D_ _x000D_ _x000D_ 1.1 Introduction 4_x000D_ _x000D_ _x000D_ 1.1.1 The Czochralski (CZ) Process 5_x000D_ _x000D_ _x000D_ 1.1.2 Continuous Czochralski Process (CCZ) 11_x000D_ _x000D_ _x000D_ 1.2 Continuous Czochralski Process Implementations 13_x000D_ _x000D_ _x000D_ 1.3 Solar Cells Fabricated Using CCZ Ingots 15_x000D_ _x000D_ _x000D_ 1.3.1 n-Type Mono-Si High-Efficiency Cells 15_x000D_ _x000D_ _x000D_ 1.3.2 Gallium-Doped p-Type Silicon Solar Cells 17_x000D_ _x000D_ _x000D_ 1.4 Conclusions 19_x000D_ _x000D_ _x000D_ References 19_x000D_ _x000D_ _x000D_ 2 Materials Chemistry and Physics for Low-Cost Silicon Photovoltaics 23_x000D_ Tingting Jiang and George Z. Chen_x000D_ _x000D_ _x000D_ 2.1 Introduction 24_x000D_ _x000D_ _x000D_ 2.2 Crystalline Silicon in Traditional/Classic Solar Cells 26_x000D_ _x000D_ _x000D_ 2.2.1 Manufacturing of Silicon Solar Cell 26_x000D_ _x000D_ _x000D_ 2.2.2 Efficiency Loss in Silicon Solar Cell 29_x000D_ _x000D_ _x000D_ 2.2.3 New Strategies for the Silicon Solar Cell 32_x000D_ _x000D_ _x000D_ 2.3 Low-Cost Crystalline Silicon 33_x000D_ _x000D_ _x000D_ 2.3.1 Metallurgical Silicon 33_x000D_ _x000D_ _x000D_ 2.3.2 Upgraded Metallurgical-Grade Silicon 33_x000D_ _x000D_ _x000D_ 2.3.2.1 Properties of Upgraded Metallurgical-Grade Silicon 34_x000D_ _x000D_ _x000D_ 2.3.2.2 Production of Upgraded Metallurgical-Grade Silicon 35_x000D_ _x000D_ _x000D_ 2.3.2.3 Development of Upgraded Metallurgical-Grade Silicon Solar Cells 36_x000D_ _x000D_ _x000D_ 2.3.3 High-Performance Multicrystalline Silicon 37_x000D_ _x000D_ _x000D_ 2.3.3.1 Crystal Growth 37_x000D_ _x000D_ _x000D_ 2.3.3.2 Material Properties of High-Performance Multicrystalline Silicon 39_x000D_ _x000D_ _x000D_ 2.3.3.3 Solar Cell Based on High-Performance Multicrystalline Silicon 40_x000D_ _x000D_ _x000D_ 2.4 Advanced p-Type Silicon-in Passivated Emitter and Rear Cell (PERC) 41_x000D_ _x000D_ _x000D_ 2.4.1 Passivated Emitter Solar Cells 41_x000D_ _x000D_ _x000D_ 2.4.1.1 Passivated Emitter Solar Cell (PESC) 41_x000D_ _x000D_ _x000D_ 2.4.1.2 Passivated Emitter and Rear Cell 42_x000D_ _x000D_ _x000D_ 2.4.1.3 Passivated Emitter, Rear Locally Diffused Solar Cells 43_x000D_ _x000D_ _x000D_ 2.4.1.4 Passivated Emitter, Rear Totally Diffused Solar Cells 44_x000D_ _x000D_ _x000D_ 2.4.2 Surface Passivation 45_x000D_ _x000D_ _x000D_ 2.5 Advanced n-Type Silicon 46_x000D_ _x000D_ _x000D_ 2.5.1 Interdigitated Back Contact (IBC) Solar Cell 47_x000D_ _x000D_ _x000D_ 2.5.2 Silicon Heterojunction (SHJ) Solar Cells 50_x000D_ _x000D_ _x000D_ 2.5.2.1 The Device Structure and the Advantages of HIT Solar Cells 51_x000D_ _x000D_ _x000D_ 2.5.2.2 Strategies of Achieving High-Efficiency HIT Solar Cell 52_x000D_ _x000D_ _x000D_ 2.6 Conclusion 53_x000D_ _x000D_ _x000D_ References 54_x000D_ _x000D_ _x000D_ 3 Recycling Crystalline Silicon Photovoltaic Modules 61_x000D_ Pablo Dias and Hugo Veit_x000D_ _x000D_ _x000D_ 3.1 Waste Electrical and Electronic Equipment 62_x000D_ _x000D_ _x000D_ 3.2 Photovoltaic Modules 65_x000D_ _x000D_ _x000D_ 3.2.1 First-Generation Photovoltaic Modules 66_x000D_ _x000D_ _x000D_ 3.3 Recyclability of Waste Photovoltaic Modules 69_x000D_ _x000D_ _x000D_ 3.3.1 Frame 70_x000D_ _x000D_ _x000D_ 3.3.2 Superstrate (Front Glass) 71_x000D_ _x000D_ _x000D_ 3.3.3 Metallic Filaments (Busbars) 72_x000D_ _x000D_ _x000D_ 3.3.4 Photovoltaic Cell 73_x000D_ _x000D_ _x000D_ 3.3.5 Polymers 74_x000D_ _x000D_ _x000D_ 3.3.6 Recyclability Summary 75_x000D_ _x000D_ _x000D_ 3.4 Separation and Recovery of Materials The Recycling Process 76_x000D_ _x000D_ _x000D_ 3.4.1 Mechanical and Physical Processes 76_x000D_ _x000D_ _x000D_ 3.4.1.1 Shredding 77_x000D_ _x000D_ _x000D_ 3.4.1.2 Sieving 77_x000D_ _x000D_ _x000D_ 3.4.1.3 Density Separation 79_x000D_ _x000D_ _x000D_ 3.4.1.4 Manual Separation 82_x000D_ _x000D_ _x000D_ 3.4.1.5 Electrostatic Separation 82_x000D_ _x000D_ _x000D_ 3.4.2 Thermal Processes-Polymers 84_x000D_ _x000D_ _x000D_ 3.4.3 Separation Using Organic Solvents 86_x000D_ _x000D_ _x000D_ 3.4.4 Pyrometallurgy 90_x000D_ _x000D_ _x000D_ 3.4.5 Hydrometallurgy 90_x000D_ _x000D_ _x000D_ 3.4.6 Electrometallurgy 93_x000D_ _x000D_ _x000D_ 3.5 New Trends in the Recycling Processes 94_x000D_ _x000D_ _x000D_ References 98_x000D_ _x000D_ _x000D_ Part 2 Emerging Photovoltaic Materials 103_x000D_ _x000D_ 4 Photovoltaics in Ferroelectric Materials Origin, Challenges and Opportunities 105_x000D_ Charles Paillard, Gregory Geneste, Laurent Bellaiche, Jens Kreisel, Marvin Alexe and Brahim Dkhil_x000D_ _x000D_ _x000D_ 4.1 Physics of the Photovoltaic Effect in Ferroelectrics 106_x000D_ _x000D_ _x000D_ 4.1.1 Conventional Photovoltaic Technologies 106_x000D_ _x000D_ _x000D_ 4.1.1.1 The p-n Junction 106_x000D_ _x000D_ _x000D_ 4.1.1.2 The Shockley-Queisser Limit 109_x000D_ _x000D_ _x000D_ 4.1.2 Mechanisms of the Photovoltaic Effect in Ferroelectric Materials 110_x000D_ _x000D_ _x000D_ 4.1.2.1 The Bulk Photovoltaic Effect 110_x000D_ _x000D_ _x000D_ 4.1.2.2 Barrier Effects 118_x000D_ _x000D_ _x000D_ 4.2 Opportunities and Challenges of Photoferroelectrics 123_x000D_ _x000D_ _x000D_ 4.2.1 To Switch or not to Switch 124_x000D_ _x000D_ _x000D_ 4.2.1.1 Switchability 124_x000D_ _x000D_ _x000D_ 4.2.1.2 Influence of Defects 125_x000D_ _x000D_ _x000D_ 4.2.2 The Bandgap Problem 127_x000D_ _x000D_ _x000D_ 4.2.3 Application of Light-Induced Effects in Ferroelectrics Beyond Solar Cells 129_x000D_ _x000D_ _x000D_ 4.2.3.1 Photovoltaics and ICTs 130_x000D_ _x000D_ _x000D_ 4.2.3.2 Photo-Induced Strain Toward Optically Controlled Actuators 130_x000D_ _x000D_ _x000D_ 4.2.3.3 Photochemistry for Clean Energy and Environment 131_x000D_ _x000D_ _x000D_ 4.3 Conclusions 133_x000D_ _x000D_ _x000D_ Acknowledgements 134_x000D_ _x000D_ _x000D_ References 134_x000D_ _x000D_ _x000D_ 5 Tin-Based Novel Cubic Chalcogenides A New Paradigm for Photovoltaic Research 141_x000D_ Sajid Ur Rehman, Faheem K. Butt, Zeeshan Tariq and Chuanbo Li_x000D_ _x000D_ _x000D_ 5.1 Introduction 142_x000D_ _x000D_ _x000D_ 5.2 Cubic Tin Sulfide ( -SnS) 145_x000D_ _x000D_ _x000D_ 5.2.1 Application -SnS in Solar Cells 145_x000D_ _x000D_ _x000D_ 5.2.2 Application of -SnS in Optical Devices 147_x000D_ _x000D_ _x000D_ 5.3 Cubic Tin Selenide ( -SnSe) 153_x000D_ _x000D_ _x000D_ 5.3.1 Application of -SnSe in Solar Cells 153_x000D_ _x000D_ _x000D_ 5.3.2 Application of -SnSe in Optical Devices 154_x000D_ _x000D_ _x000D_ 5.4 Cubic Tin Telluride ( -SnTe) 157_x000D_ _x000D_ _x000D_ 5.4.1 Application of -SnTe in Optical Devices 158_x000D_ _x000D_ _x000D_ 5.5 Conclusion 160_x000D_ _x000D_ _x000D_ Acknowledgement 160_x000D_ _x000D_ _x000D_ References 161_x000D_ _x000D_ _x000D_ 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165_x000D_ Antonio Sanchez-Coronilla, Javier Navas, Elisa I. Martin, Teresa Aguilar, Juan Jesus Gallardo, Desiree de los Santos, Rodrigo Alcantara and Concha Fernandez-Lorenzo_x000D_ _x000D_ _x000D_ 6.1 Introduction 166_x000D_ _x000D_ _x000D_ 6.2 Materials and Methods 167_x000D_ _x000D_ _x000D_ 6.2.1 Experimental 167_x000D_ _x000D_ _x000D_ 6.2.2 Computational Framework 169_x000D_ _x000D_ _x000D_ 6.3 Cu-TiO2 Doping 170_x000D_ _x000D_ _x000D_ 6.3.1 Photovoltaics of the DSSCs 175_x000D_ _x000D_ _x000D_ 6.4 Al-TiO2 Doping 177_x000D_ _x000D_ _x000D_ 6.5 Tm-TiO2 Doping 181_x000D_ _x000D_ _x000D_ 6.5.1 Photovoltaic Characterization 184_x000D_ _x000D_ _x000D_ 6.5.2 Photocatalytic Activity 186_x000D_ _x000D_ _x000D_ 6.6 Conclusions 187_x000D_ _x000D_ _x000D_ References 189_x000D_ _x000D_ _x000D_ 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195_x000D_ Bruno Mettout and Pierre Toledano_x000D_ _x000D_ _x000D_ 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196_x000D_ _x000D_ _x000D_ 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197_x000D_ _x000D_ _x000D_ 7.3 Response Functions under Linearly Polarized Light 199_x000D_ _x000D_ _x000D_ 7.3.1 Mean Symmetry of the Light Beam 199_x000D_ _x000D_ _x000D_ 7.3.2 Response Functions 202_x000D_ _x000D_ _x000D_ 7.3.2.1 Achiral and Nonmagnetic Materials 202_x000D_ _x000D_ _x000D_ 7.3.2.2 Chiral and Magnetic Materials 205_x000D_ _x000D_ _x000D_ 7.4 Selection Procedures 206_x000D_ _x000D_ _x000D_ 7.4.1 External Selection 206_x000D_ _x000D_ _x000D_ 7.4.2 Internal Selection 208_x000D_ _x000D_ _x000D_ 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210_x000D_ _x000D_ _x000D_ 7.5.1 Second-Order Photovoltaic Effect 210_x000D_ _x000D_ _x000D_ 7.5.2 Photovoltaic Effects in LiNbO3 212_x000D_ _x000D_ _x000D_ 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215_x000D_ _x000D_ _x000D_ 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216_x000D_ _x000D_ _x000D_ 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218_x000D_ _x000D_ _x000D_ 7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218_x000D_ _x000D_ _x000D_ 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220_x000D_ _x000D_ _x000D_ 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224_x000D_ _x000D_ _x000D_ 7.7.1 Photo-Magnetoelectric Effects 224_x000D_ _x000D_ _x000D_ 7.7.2 Photovoltaic Effects in BiFeO3 226_x000D_ _x000D_ _x000D_ 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227_x000D_ _x000D_ _x000D_ 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229_x000D_ _x000D_ _x000D_ 7.8.1 The Photorefractive Effect 230_x000D_ _x000D_ _x000D_ 7.8.2 The Photo-Hall Effect 231_x000D_ _x000D_ _x000D_ 7.9 Summary and Conclusion 234_x000D_ _x000D_ _x000D_ Acknowledgement 235_x000D_ _x000D_ _x000D_ References 235_x000D_ _x000D_ _x000D_ 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239_x000D_ Peediyekkal Jayaram_x000D_ _x000D_ _x000D_ 8.1 Introduction 239_x000D_ _x000D_ _x000D_ 8.2 Multication Film Growth and Analysis 243_x000D_ _x000D_ _x000D_ 8.3 Structural Analysis 244_x000D_ _x000D_ _x000D_ 8.4 Raman Spectra 247_x000D_ _x000D_ _x000D_ 8.5 Surface Morphology (AFM) 248_x000D_ _x000D_ _x000D_ 8.6 Optical Properties UV-Vis Transmittance Spectra 248_x000D_ _x000D_ _x000D_ 8.7 Electrical Properties 253_x000D_ _x000D_ _x000D_ 8.8 Conclusion 257_x000D_ _x000D_ _x000D_ References 258_x000D_ _x000D_ _x000D_ Part 3 Perovskite Solar Cells 261_x000D_ _x000D_ _x000D_ 9 Perovskite Solar Cells Promises and Challenges 263_x000D_ Qiong Wang and Antonio Abate_x000D_ _x000D_ _x000D_ 9.1 The Scientific and Technological Background 264_x000D_ _x000D_ _x000D_ 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264_x000D_ _x000D_ _x000D_ 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266_x000D_ _x000D_ _x000D_ 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269_x000D_ _x000D_ _x000D_ 9.2 The Fast Development of PSCs 270_x000D_ _x000D_ _x000D_ 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271_x000D_ _x000D_ _x000D_ 9.2.1.1 Optical Properties 272_x000D_ _x000D_ _x000D_ 9.2.1.2 Electronic Properties 276_x000D_ _x000D_ _x000D_ 9.2.2 Composition Adjustment of Perovskite 288_x000D_ _x000D_ _x000D_ 9.2.2.1 Mixed Halides 288_x000D_ _x000D_ _x000D_ 9.2.2.2 Multi-Cations 292_x000D_ _x000D_ _x000D_ 9.2.2.3 Phase Segregation 297_x000D_ _x000D_ _x000D_ 9.2.3 Versatile Deposition Methods of Perovskite Film 297_x000D_ _x000D_ _x000D_ 9.2.3.1 Solution-Processed Methods 298_x000D_ _x000D_ _x000D_ 9.2.3.2 Vapor Deposition Methods 306_x000D_ _x000D_ _x000D_ 9.2.4 Charge Selective Contacts in PSCs 308_x000D_ _x000D_ _x000D_ 9.2.4.1 Electron Selective Contacts 309_x000D_ _x000D_ _x000D_ 9.2.4.2 Hole Selective Contacts 311_x000D_ _x000D_ _x000D_ 9.2.5 Evaluation of PSCs 315_x000D_ _x000D_ _x000D_ 9.2.5.1 J-V curve 315_x000D_ _x000D_ _x000D_ 9.2.5.2 Maximum Power Point Tracking (MPPT) 316_x000D_ _x000D_ _x000D_ 9.2.6 The Systematic Understanding of PSCs 318_x000D_ _x000D_ _x000D_ 9.2.6.1 Moisture Vulnerability of Perovskite Materials 318_x000D_ _x000D_ _x000D_ 9.2.6.2 The Role of Grain Boundaries 318_x000D_ _x000D_ _x000D_ 9.2.6.3 Ion Migration and Hysteresis 322_x000D_ _x000D_ _x000D_ 9.2.6.4 Interface/Bulk Defects and Passivation 324_x000D_ _x000D_ _x000D_ 9.2.7 PSCs in a Tandem 328_x000D_ _x000D_ _x000D_ 9.2.7.1 Structures of Perovskite Tandem Cells 328_x000D_ _x000D_ _x000D_ 9.2.7.2 Transparent Contacts and Recombination Contacts 330_x000D_ _x000D_ _x000D_ 9.3 Remaining Challenges and Prospects of PSCs 331_x000D_ _x000D_ _x000D_ 9.3.1 Lead-Free PSCs 331_x000D_ _x000D_ _x000D_ 9.3.2 Stable and Cheap Contact Materials 336_x000D_ _x000D_ _x000D_ 9.3.3 Strategies toward Stable PSCs 338_x000D_ _x000D_ _x000D_ 9.3.3.1 Against Moisture 338_x000D_ _x000D_ _x000D_ 9.3.3.2 Against UV Light 339_x000D_ _x000D_ _x000D_ 9.3.3.3 Against Heat 341_x000D_ _x000D_ _x000D_ 9.3.4 Large-Area Production of Highly Efficient PSCs 342_x000D_ _x000D_ _x000D_ References 345_x000D_ _x000D_ _x000D_ 10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357_x000D_ Javier Navas, Antonio Sanchez-Coronilla, Juan Jesus Gallardo, Jose Carlos Pinero, Teresa Aguilar, Elisa I. Martin, Rodrigo Alcantara, Concha Fernandez-Lorenzo and Joaquin Martin-Calleja_x000D_ _x000D_ _x000D_ 10.1 Introduction 358_x000D_ _x000D_ _x000D_ 10.2 Low Doping on Pb Sites 359_x000D_ _x000D_ _x000D_ 10.2.1 Materials and Methods 359_x000D_ _x000D_ _x000D_ 10.2.1.1 Experimental 359_x000D_ _x000D_ _x000D_ 10.2.1.2 Computational Details 361_x000D_ _x000D_ _x000D_ 10.2.2 Properties of the Perovskite Prepared 362_x000D_ _x000D_ _x000D_ 10.2.2.1 XRD 362_x000D_ _x000D_ _x000D_ 10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365_x000D_ _x000D_ _x000D_ 10.2.2.3 X-Ray Photoelectron Spectroscopy 366_x000D_ _x000D_ _x000D_ 10.2.2.4 SEM and Cathodoluminescence 369_x000D_ _x000D_ _x000D_ 10.2.3 Theoretical Analysis 371_x000D_ _x000D_ _x000D_ 10.2.3.1 Structure and Local Geometry 371_x000D_ _x000D_ _x000D_ 10.2.3.2 DOS and PDOS Analysis 372_x000D_ _x000D_ _x000D_ 10.2.3.3 ELF Analysis 376_x000D_ _x000D_ _x000D_ 10.3 High Doping on Pb Sites 378_x000D_ _x000D_ _x000D_ 10.3.1 Properties of the Perovskite Prepared 379_x000D_ _x000D_ _x000D_ 10.3.1.1 XRD 379_x000D_ _x000D_ _x000D_ 10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384_x000D_ _x000D_ _x000D_ 10.3.1.3 X-Ray Photoelectron Spectroscopy 386_x000D_ _x000D_ _x000D_ 10.3.2 Theoretical Analysis 388_x000D_ _x000D_ _x000D_ 10.3.2.1 Structure and Local Geometry 388_x000D_ _x000D_ _x000D_ 10.3.2.2 Electron Localization Function 391_x000D_ _x000D_ _x000D_ 10.3.2.3 DOS and PDOS Analysis 393_x000D_ _x000D_ _x000D_ 10.4 Conclusions 397_x000D_ _x000D_ _x000D_ References 397_x000D_ _x000D_ _x000D_ Part 4 Organic Solar Cells 401_x000D_ _x000D_ _x000D_ 11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403_x000D_ Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi_x000D_ _x000D_ _x000D_ 11.1 Introduction 404_x000D_ _x000D_ _x000D_ 11.2 Increasing the Dielectric Constant 415_x000D_ _x000D_ _x000D_ 11.2.1 Methodology of Dielectric Constant Measurement 415_x000D_ _x000D_ _x000D_ 11.2.2 High Dielectric Constant Materials 421_x000D_ _x000D_ _x000D_ 11.2.2.1 High Dielectric Constant Donor Materials 422_x000D_ _x000D_ _x000D_ 11.2.2.2 High Dielectric Constant Acceptor Materials 429_x000D_ _x000D_ _x000D_ 11.3 Conclusions and Outlook 435_x000D_ _x000D_ _x000D_ References 436_x000D_ _x000D_ _x000D_ 12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443_x000D_ Devender Singh, Raman Kumar Saini and Shri Bhagwan_x000D_ _x000D_ _x000D_ 12.1 Solar Energy and Solar Cells 444_x000D_ _x000D_ _x000D_ 12.2 Types of Solar Cells 445_x000D_ _x000D_ _x000D_ 12.2.1 First-Generation Photovoltaic Cells 445_x000D_ _x000D_ _x000D_ 12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445_x000D_ _x000D_ _x000D_ 12.2.1.2 Polycrystalline Silicon Based Solar Cells 445_x000D_ _x000D_ _x000D_ 12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447_x000D_ _x000D_ _x000D_ 12.2.2 Second-Generation Photovoltaic Cells 447_x000D_ _x000D_ _x000D_ 12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447_x000D_ _x000D_ _x000D_ 12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448_x000D_ _x000D_ _x000D_ 12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448_x000D_ _x000D_ _x000D_ 12.2.3 Third-Generation Photovoltaic Cells 449_x000D_ _x000D_ _x000D_ 12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449_x000D_ _x000D_ _x000D_ 12.2.3.2 Organic Solar Cells 449_x000D_ _x000D_ _x000D_ 12.2.3.3 Perovskite Solar Cells 450_x000D_ _x000D_ _x000D_ 12.2.3.4 Quantum Dot Solar Cell 450_x000D_ _x000D_ _x000D_ 12.3 Dye-Sensitized Solar Cells (DSSCs) 450_x000D_ _x000D_ _x000D_ 12.4 Operation of DSSCs 452_x000D_ _x000D_ _x000D_ 12.4.1 Working System of DSSCs 454_x000D_ _x000D_ _x000D_ 12.5 Fabrication of DSSCs 455_x000D_ _x000D_ _x000D_ 12.5.1 Substrate Selection and Preparation 456_x000D_ _x000D_ _x000D_ 12.5.1.1 Cutting of the Substrate 456_x000D_ _x000D_ _x000D_ 12.5.1.2 Cleaning of the Substrate 456_x000D_ _x000D_ _x000D_ 12.5.1.3 Masking of the Substrate 456_x000D_ _x000D_ _x000D_ 12.5.2 Film Deposition on Substrate 456_x000D_ _x000D_ _x000D_ 12.5.2.1 Preparation of TiO2 Paste 459_x000D_ _x000D_ _x000D_ 12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460_x000D_ _x000D_ _x000D_ 12.5.3 Dye Impregnation on the Electrode 460_x000D_ _x000D_ _x000D_ 12.5.4 Preparation of Counter Electrode 460_x000D_ _x000D_ _x000D_ 12.6 Various Materials Used as Essential Components of DSSCs 461_x000D_ _x000D_ _x000D_ 12.6.1 Transparent Conducting Substrate 461_x000D_ _x000D_ _x000D_ 12.6.2 Photoelectrodes 462_x000D_ _x000D_ _x000D_ 12.6.2.1 Titanium Oxide (TiO2) 462_x000D_ _x000D_ _x000D_ 12.6.2.2 Zinc Oxide (ZnO) 463_x000D_ _x000D_ _x000D_ 12.6.2.3 Niobium Pentoxide (Nb2O5) 464_x000D_ _x000D_ _x000D_ 12.6.2.4 Ternary Photoelectrode Materials 465_x000D_ _x000D_ _x000D_ 12.6.2.5 Other Metal Oxides 465_x000D_ _x000D_ _x000D_ 12.6.3 Photosensitizers 466_x000D_ _x000D_ _x000D_ 12.6.3.1 Metal Complexes as Sensitizers 467_x000D_ _x000D_ _x000D_ 12.6.4 Electrolytes 471_x000D_ _x000D_ _x000D_ 12.6.4.1 Liquid Electrolytes 472_x000D_ _x000D_ _x000D_ 12.6.4.2 Solid-State Electrolytes 473_x000D_ _x000D_ _x000D_ 12.6.4.3 Quasi-Solid Electrolyte 474_x000D_ _x000D_ _x000D_ 12.6.5 Counter Electrodes 474_x000D_ _x000D_ _x000D_ 12.6.5.1 Platinized Conducting Glass 474_x000D_ _x000D_ _x000D_ 12.6.5.2 Carbon Materials 474_x000D_ _x000D_ _x000D_ 12.6.5.3 Conducting Polymers 475_x000D_ _x000D_ _x000D_ 12.7 Advantages and Applications of DSSC 475_x000D_ _x000D_ _x000D_ 12.8 Future Prospect of DSSC 476_x000D_ _x000D_ _x000D_ 12.9 Conclusions 476_x000D_ _x000D_ _x000D_ References 477_x000D_ _x000D_ _x000D_ 13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487_x000D_ Peicheng Li and Zheng-Hong Lu_x000D_ _x000D_ _x000D_ 13.1 Introduction 487_x000D_ _x000D_ _x000D_ 13.2 Ultraviolet Photoemission Spectroscopy 490_x000D_ _x000D_ _x000D_ 13.3 Energy Level Alignment at Heterojunction Interfaces 493_x000D_ _x000D_ _x000D_ 13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493_x000D_ _x000D_ _x000D_ 13.3.2 Interfacial Dipole Theory 495_x000D_ _x000D_ _x000D_ 13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497_x000D_ _x000D_ _x000D_ 13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499_x000D_ _x000D_ _x000D_ 13.4.1 Two-Diode Model 499_x000D_ _x000D_ _x000D_ 13.4.2 Quasi Fermi Level Model 501_x000D_ _x000D_ _x000D_ 13.4.3 Chemical Equilibrium Model 503_x000D_ _x000D_ _x000D_ 13.4.4 Kinetic Hopping Model 504_x000D_ _x000D_ _x000D_ References 508_x000D_ _x000D_ _x000D_ 14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511_x000D_ Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov_x000D_ _x000D_ _x000D_ 14.1 Introduction 512_x000D_ _x000D_ _x000D_ 14.2 Experimental 513_x000D_ _x000D_ _x000D_ 14.2.1 Fabrication of PECVD Materials 513_x000D_ _x000D_ _x000D_ 14.2.2 Fabrication of Organic Materials 514_x000D_ _x000D_ _x000D_ 14.2.3 Configurations and Fabrication of Device Structures 516_x000D_ _x000D_ _x000D_ 14.2.4 Characterization of Materials 516_x000D_ _x000D_ _x000D_ 14.2.5 Characterization of Device Structures 521_x000D_ _x000D_ _x000D_ 14.3 Material Results 522_x000D_ _x000D_ _x000D_ 14.3.1 Structure and Composition 522_x000D_ _x000D_ _x000D_ 14.3.2 Optical Properties 526_x000D_ _x000D_ _x000D_ 14.3.3 Electrical Properties 529_x000D_ _x000D_ _x000D_ 14.4 Results for Devices 537_x000D_ _x000D_ _x000D_ 14.4.1 Devices Based on PECVD Materials 537_x000D_ _x000D_ _x000D_ 14.4.2 Devices Based on Organic Materials 538_x000D_ _x000D_ _x000D_ 14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540_x000D_ _x000D_ _x000D_ 14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543_x000D_ _x000D_ _x000D_ 14.5 Outlook 546_x000D_ _x000D_ _x000D_ Acknowledgment 546_x000D_ _x000D_ _x000D_ References 546_x000D_ _x000D_ _x000D_ Part 5 Nano-Photovoltaics 551_x000D_ _x000D_ 15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553_x000D_ LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter_x000D_ _x000D_ _x000D_ 15.1 Introduction 554_x000D_ _x000D_ _x000D_ 15.1.1 Energy Issues and Potential Solutions 554_x000D_ _x000D_ _x000D_ 15.1.2 Categories of Photovoltaic Devices and Their Development 554_x000D_ _x000D_ _x000D_ 15.2 Carbon Nanotubes (CNTs) 556_x000D_ _x000D_ _x000D_ 15.3 Transparent Conducting Electrodes (TCEs) 556_x000D_ _x000D_ _x000D_ 15.3.1 ITO and FTO 556_x000D_ _x000D_ _x000D_ 15.3.2 CNTs for TCEs 557_x000D_ _x000D_ _x000D_ 15.4 Dye-Sensitized Solar Cells (DSSCs) 563_x000D_ _x000D_ _x000D_ 15.4.1 CNTs-TCFs for DSSCs 563_x000D_ _x000D_ _x000D_ 15.4.2 Semiconducting Layers 565_x000D_ _x000D_ _x000D_ 15.4.2.1 Nanostructured TiO2 Materials 565_x000D_ _x000D_ _x000D_ 15.4.2.2 Semiconducting Layers with CNTs 566_x000D_ _x000D_ _x000D_ 15.4.3 Catalyst Layers 570_x000D_ _x000D_ _x000D_ 15.4.3.1 Platinum (Pt) and Other Catalysts 570_x000D_ _x000D_ _x000D_ 15.5 CNTs in Perovskite Solar Cells 572_x000D_ _x000D_ _x000D_ 15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575_x000D_ _x000D_ _x000D_ 15.6.1 Working Mechanism 575_x000D_ _x000D_ _x000D_ 15.6.2 Development of Si-CNT Devices 576_x000D_ _x000D_ _x000D_ 15.6.3 Origin of Photocurrent 577_x000D_ _x000D_ _x000D_ 15.6.4 Effect of the Number of CNT Walls 578_x000D_ _x000D_ _x000D_ 15.6.5 Effect of the Electronic Type of CNTs 579_x000D_ _x000D_ _x000D_ 15.6.6 Effect of CNT Alignment in the Electrode 579_x000D_ _x000D_ _x000D_ 15.6.7 Effect of the Transmittance/Thickness of CNT Films 580_x000D_ _x000D_ _x000D_ 15.6.8 Effect of Doping 580_x000D_ _x000D_ _x000D_ 15.6.9 Intentional Addition of Silicon Oxide Layer 581_x000D_ _x000D_ _x000D_ 15.6.10 Enhancement of Light Absorption 582_x000D_ _x000D_ _x000D_ 15.6.11 Application of Conductive Polymers 584_x000D_ _x000D_ _x000D_ 15.6.12 Discussion 584_x000D_ _x000D_ _x000D_ 15.7 Outlook and Conclusion 585_x000D_ _x000D_ _x000D_ References 586_x000D_ _x000D_ _x000D_ 16 Quantum Dot Solar Cells 611_x000D_ Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun_x000D_ _x000D_ _x000D_ 16.1 Introduction 612_x000D_ _x000D_ _x000D_ 16.2 Quantum Dots and Their Properties 612_x000D_ _x000D_ _x000D_ 16.2.1 Fundamental Concepts 612_x000D_ _x000D_ _x000D_ 16.2.2 Size-Dependent Quantum Confinement Effect 613_x000D_ _x000D_ _x000D_ 16.2.3 Multiple Exciton Generation Effect 614_x000D_ _x000D_ _x000D_ 16.2.4 The Kondo Effect 616_x000D_ _x000D_ _x000D_ 16.2.5 Applications 617_x000D_ _x000D_ _x000D_ 16.3 Synthetic Methods for Quantum Dots 618_x000D_ _x000D_ _x000D_ 16.3.1 Hot Injection 618_x000D_ _x000D_ _x000D_ 16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619_x000D_ _x000D_ _x000D_ 16.3.1.2 Influence Factors 621_x000D_ _x000D_ _x000D_ 16.3.1.3 Features 623_x000D_ _x000D_ _x000D_ 16.3.2 Chemical Bath Deposition 624_x000D_ _x000D_ _x000D_ 16.3.2.1 Theoretical Evaluation of the CBD Method 625_x000D_ _x000D_ _x000D_ 16.3.2.2 Influence Factors 625_x000D_ _x000D_ _x000D_ 16.3.2.3 Features 627_x000D_ _x000D_ _x000D_ 16.3.3 Successive Ionic Layer Adsorption and Reaction 628_x000D_ _x000D_ _x000D_ 16.3.3.1 Theoretical Evaluation of SILAR Method 629_x000D_ _x000D_ _x000D_ 16.3.3.2 Influence Factors 630_x000D_ _x000D_ _x000D_ 16.3.3.3 Features 632_x000D_ _x000D_ _x000D_ 16.4 Quantum Dot Solar Cells 633_x000D_ _x000D_ _x000D_ 16.4.1 Schottky Junction Solar Cells 633_x000D_ _x000D_ _x000D_ 16.4.1.1 Device Structure 633_x000D_ _x000D_ _x000D_ 16.4.1.2 Preparation Route 635_x000D_ _x000D_ _x000D_ 16.4.1.3 Materials Selection 635_x000D_ _x000D_ _x000D_ 16.4.1.4 Photovoltaic Performance 636_x000D_ _x000D_ _x000D_ 16.4.2 Depleted Heterojunction Solar Cells 637_x000D_ _x000D_ _x000D_ 16.4.2.1 Device Structure 637_x000D_ _x000D_ _x000D_ 16.4.2.2 Preparation Route 638_x000D_ _x000D_ _x000D_ 16.4.2.3 Materials Selection 639_x000D_ _x000D_ _x000D_ 16.4.2.4 Photovoltaic Performance 640_x000D_ _x000D_ _x000D_ 16.4.3 Quantum-Dot-Sensitized Solar Cells 641_x000D_ _x000D_ _x000D_ 16.4.3.1 Device Structure 641_x000D_ _x000D_ _x000D_ 16.4.3.2 Preparation Route 642_x000D_ _x000D_ _x000D_ 16.4.3.3 Materials Selection 643_x000D_ _x000D_ _x000D_ 16.4.3.4 Photovoltaic Performance 644_x000D_ _x000D_ _x000D_ 16.4 Challenges and Perspectives 645_x000D_ _x000D_ _x000D_ References 646_x000D_ _x000D_ _x000D_ 17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659_x000D_ Ru Zhou, Jun Xu and Jinzhang Xu_x000D_ _x000D_ _x000D_ 17.1 Introduction 660_x000D_ _x000D_ _x000D_ 17.2 Physical and Chemical Properties 662_x000D_ _x000D_ _x000D_ 17.2.1 Multiple Exciton Generation 662_x000D_ _x000D_ _x000D_ 17.2.2 Quantum Size Effect 663_x000D_ _x000D_ _x000D_ 17.2.3 Other Features 664_x000D_ _x000D_ _x000D_ 17.3 Materials and Film Processing 665_x000D_ _x000D_ _x000D_ 17.3.1 In Situ Strategy 665_x000D_ _x000D_ _x000D_ 17.3.2 Ex Situ Strategy 666_x000D_ _x000D_ _x000D_ 17.3.3 A Comparison between In Situ and Ex Situ 667_x000D_ _x000D_ _x000D_ 17.4 NIR Responsive QDs and Photovoltaic Performance 669_x000D_ _x000D_ _x000D_ 17.4.1 Binary Lead Chalcogenides 669_x000D_ _x000D_ _x000D_ 17.4.2 Binary Silver Chalcogenides 674_x000D_ _x000D_ _x000D_ 17.4.3 Ternary Indium-Based Chalcogenides 676_x000D_ _x000D_ _x000D_ 17.4.4 Ternary and Quaternary Alloyed Compounds 678_x000D_ _x000D_ _x000D_ 17.5 Strategies for Performance Enhancement 682_x000D_ _x000D_ _x000D_ 17.5.1 Light Management 682_x000D_ _x000D_ _x000D_ 17.5.1.1 Nanophotonic Structuring 682_x000D_ _x000D_ _x000D_ 17.5.1.2 Plasmonic Enhancement 683_x000D_ _x000D_ _x000D_ 17.5.2 Carrier Management 684_x000D_ _x000D_ _x000D_ 17.5.2.1 Band Structure Tailoring 684_x000D_ _x000D_ _x000D_ 17.5.2.2 Surface Engineering 687_x000D_ _x000D_ _x000D_ 17.5.2.3 Charge Collection Optimizing 692_x000D_ _x000D_ _x000D_ 17.6 New Concept Solar Cells 692_x000D_ _x000D_ _x000D_ 17.6.1 Multiple-Junction CQD Solar Cells 693_x000D_ _x000D_ _x000D_ 17.6.2 Flexible Solar Cells 694_x000D_ _x000D_ _x000D_ 17.6.3 Semitransparent Solar Cells 694_x000D_ _x000D_ _x000D_ 17.6.4 QD/Perovskite Hybrid Solar Cells 696_x000D_ _x000D_ _x000D_ 17.7 Conclusions and Perspectives 699_x000D_ _x000D_ _x000D_ Acknowledgments 701_x000D_ _x000D_ _x000D_ References 701_x000D_ _x000D_ _x000D_ Part 6 Concentrator Photovoltaics and Analysis Models 719_x000D_ _x000D_ _x000D_ 18 Dense-Array Concentrator Photovoltaic System 721_x000D_ Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan_x000D_ _x000D_ _x000D_ 18.1 Introduction 722_x000D_ _x000D_ _x000D_ 18.2 Primary Concentrator Non-Imaging Dish Concentrator 722_x000D_ _x000D_ _x000D_ 18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723_x000D_ _x000D_ _x000D_ 18.2.2 Methodology of Designing NIDC Geometry 726_x000D_ _x000D_ _x000D_ 18.2.3 Coordinate Transformation of Facet Mirror 728_x000D_ _x000D_ _x000D_ 18.2.4 Computational Algorithm 730_x000D_ _x000D_ _x000D_ 18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733_x000D_ _x000D_ _x000D_ 18.4 Concentrator Photovoltaic Module 740_x000D_ _x000D_ _x000D_ 18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742_x000D_ _x000D_ _x000D_ 18.6 Optical Efficiency of the CCPC Lens 744_x000D_ _x000D_ _x000D_ 18.7 Experimental Study of Electrical Performance 750_x000D_ _x000D_ _x000D_ 18.7.1 Current Measurement Circuit 754_x000D_ _x000D_ _x000D_ 18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757_x000D_ _x000D_ _x000D_ 18.9 Conclusion 758_x000D_ _x000D_ _x000D_ Acknowledgments 759_x000D_ _x000D_ _x000D_ References 760_x000D_ _x000D_ _x000D_ 19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763_x000D_ Figen Balo and Lutfu S. Sua_x000D_ _x000D_ _x000D_ 19.1 Introduction 764_x000D_ _x000D_ _x000D_ 19.1.1 Solar Energy in Turkey 764_x000D_ _x000D_ _x000D_ 19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766_x000D_ _x000D_ _x000D_ 19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768_x000D_ _x000D_ _x000D_ 19.2.1 Horizontal Surface 768_x000D_ _x000D_ _x000D_ 19.2.1.1 Daily Total Solar Radiation 768_x000D_ _x000D_ _x000D_ 19.2.1.2 Daily Diffuse Solar Radiation 768_x000D_ _x000D_ _x000D_ 19.2.1.3 Momentary Total Solar Radiation 769_x000D_ _x000D_ _x000D_ 19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769_x000D_ _x000D_ _x000D_ 19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770_x000D_ _x000D_ _x000D_ 19.2.2.1 Momentary Direct Solar Radiation 770_x000D_ _x000D_ _x000D_ 19.2.2.2 Momentary Diffuse Solar Radiation 770_x000D_ _x000D_ _x000D_ 19.2.2.3 Reflecting Momentary Solar Radiation 771_x000D_ _x000D_ _x000D_ 19.2.2.4 Total Momentary Solar Radiation 771_x000D_ _x000D_ _x000D_ 19.2.3 Data Analysis and Discussion 771_x000D_ _x000D_ _x000D_ 19.3 PVsyst Simulation for the Solar Farm System Design 777_x000D_ _x000D_ _x000D_ 19.3.1 Methodology 777_x000D_ _x000D_ _x000D_ 19.3.2 Findings Obtained with PVsyst Simulation 781_x000D_ _x000D_ _x000D_ 19.4 Conclusions 783_x000D_ _x000D_ _x000D_ References 784_x000D_ _x000D_ _x000D_ Index 787_x000D_ show more



    Book Successfully Added To Your Cart