×







We sell 100% Genuine & New Books only!

Audio Signal Processing for Next-Generation Multimedia Communication Systems at Meripustak

Audio Signal Processing for Next-Generation Multimedia Communication Systems by Yiteng (Arden) Huang, Jacob Benesty , Springer

Books from same Author: Yiteng (Arden) Huang, Jacob Benesty

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Price: ₹ 44147.00/- [ 7.00% off ]

    Seller Price: ₹ 41056.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

General Information  
Author(s)Yiteng (Arden) Huang, Jacob Benesty
PublisherSpringer
ISBN9781475784770
Pages374
BindingPaperback
LanguageEnglish
Publish YearMarch 2013

Description

Springer Audio Signal Processing for Next-Generation Multimedia Communication Systems by Yiteng (Arden) Huang, Jacob Benesty

Audio Signal Processing for Next-Generation Multimedia Communication Systems presents cutting-edge digital signal processing theory and implementation techniques for problems including speech acquisition and enhancement using microphone arrays, new adaptive filtering algorithms, multichannel acoustic echo cancellation, sound source tracking and separation, audio coding, and realistic sound stage reproduction. This book's focus is almost exclusively on the processing, transmission, and presentation of audio and acoustic signals in multimedia communications for telecollaboration where immersive acoustics will play a great role in the near future._x000D_ Table of contents : - _x000D_ Preface. Contributing Authors. 1: Introduction; Yiteng (Arden) Huang, J. Benesty. 1. Multimedia Communications. 2. Challenges and Opportunities. 3. Organization of the Book. _x000D_ I: Speech Acquisition and Enhancement. 2: Differential Microphone Arrays; G.W. Elko. 1. Introduction. 2. Differential Microphone Arrays. 3. Array Directional Gain. 4. Optimal Arrays for Isotropic Fields. 5. Design Examples. 6. Sensitivity to Microphone Mismatch and Noise. 7. Conclusions. 3: Spherical Microphone Arrays for 3D Sound Recording; J. Meyer, G.W. Elko. 1. Introduction. 2. Fundamental Concept. 3. The Eigenbeamformer. 4. Modal-Beamformer. 5. Robustness Measure. 6. Beampattern Design. 7. Measurements. 8. Summary. 9. Appendix A. 4: Subband Noise Reduction Methods for Speech Enhancement; E.J. Diethorn. 1. Introduction. 2. Wiener Filtering. 3. Speech Enhancement by Short-Time Spectral Modification. 4. Averaging Techniques for Envelope Estimation. 5. Example Implementation. 6. Conclusion. _x000D_ II: Acoustic Echo Cancellation. 5: Adaptive Algorithms for MIMO Acoustic Echo Cancellation; J. Benesty, T. Gansler, Yiteng (Arden) Huang, M. Rupp. 1. Introduction. 2. Normal Equations and Identification of a MIMO System. 3. The Classical and Factorized Multichannel RLS. 4. The Multichannel Fast RLS. 5. TheMultichannel LMS Algorithm. 6. The Multichannel APA. 7. The Multichannel Exponentiated Gradient Algorithm. 8. The Multichannel Frequency-domain Adaptive Algorithm. 9. Conclusions. 6: Double-talk Detectors for Acoustic Echo Cancellers; T. Gansler, J. Benesty. 1. Introduction. 2. Basics of AEC and DTD. 3. Double-talk Detection Algorithms. 4. Comparison of DTDs by Means of the ROC. 5. Discussion. 7: The WinEC: A Real-Time Hands-Free Stereo Communication System; T. Gansler, V. Fischer, E.J. Diethorn, J. Benesty. 1. Introduction. 2. System Description. 3. Algorithms of the Echo Canceller Module. 4. Residual Echo and Noise Suppression. 5. Simulations. 6. Real-Time Tests with Different Modes of Operation. 7. Discussion. _x000D_ III: Sound Source Tracking and Separation. 8: Time Delay Estimation; Jingdong Chen, Yiteng (Arden) Huang, J. Benesty. 1. Introduction. 2. Signal Models. 3. Generalized Cross-Correlation Method. 4. The Multichannel Cross-Correlation Algorithm. 5. Adaptive Eigenvalue Decomposition Algorithm. 6. Adaptive Multichannel Time Delay Estimation. 7. Experiments. 8. Conclusions. 9: Source Localization; Yiteng (Arden) Huang, J. Benesty, G.W. Elko. 1. Introduction. 2. Source Localization Problem. 3. Measurement Model and Cramer-Rao lower Bound for Source Localization. 4. Maximum Liklihood Estimator. 5. Least Squares Estimate. 6. Example_x000D_



Book Successfully Added To Your Cart