×







We sell 100% Genuine & New Books only!

Solar Power Plants Fundamentals Technology Systems Economics at Meripustak

Solar Power Plants Fundamentals Technology Systems Economics by C.-J. Winter, Rudolf L. Sizmann, Lorin L. Vant-Hull , Springer

Books from same Author: C.-J. Winter, Rudolf L. Sizmann, Lorin L. Vant-Hull

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Price: ₹ 26701.00/- [ 7.00% off ]

    Seller Price: ₹ 24832.00

Estimated Delivery Time : 4-5 Business Days

Sold By: Meripustak      Click for Bulk Order

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

We deliver across all postal codes in India

Orders Outside India


Add To Cart


Outside India Order Estimated Delivery Time
7-10 Business Days


  • We Deliver Across 100+ Countries

  • MeriPustak’s Books are 100% New & Original
  • General Information  
    Author(s)C.-J. Winter, Rudolf L. Sizmann, Lorin L. Vant-Hull
    PublisherSpringer
    ISBN9783642647598
    Pages425
    BindingPaperback
    LanguageEnglish
    Publish YearOctober 2011

    Description

    Springer Solar Power Plants Fundamentals Technology Systems Economics by C.-J. Winter, Rudolf L. Sizmann, Lorin L. Vant-Hull

    In the introductory and concluding chapters this book strive to satisfy the needs of the interested lay reader by addressing the potential, advantages, and costs of solar power plants. For the interested student, scientist, or technically oriented lay person the physical principles of insolation, its variability, concentration, and most efficient use are developed in some detail. Finally, experimental and theoretical developments in the recently created field of solar driven chemistry (via thermal, quantum, or electrical excitation) are described. The contributions in this book are written by leading solar scientists and engineering experts whose extensive background and experience in solar energy lend authenticity and completeness to the book. Design aspects of, and results from large experimental and demonstration plants are described by individuals who were directly involved in the design and testing of many of these plants. Consideration of the viability and future economics of large-scale solar power generation provides an outlook on the energy contributions which can be expected from an optional future supply of abundant and renewable energy, having little impact on the environment. This provides the rationale for the continued commitment to the development of solar power technologies by researchers, engineers, and industry. The eventual depletion of, or future political attacks on our energy supply will have less serious impact once this renewable option is in place._x000D_ Table of contents : - _x000D_ 1 The Energy Heptagon.- 2 Solar Radiation Conversion.- 2.1 Introduction.- 2.2 Solar Radiant Flux.- 2.2.1 Modulation Through Revolution and Rotation.- 2.2.2 Beam Radiation on Tilted Surfaces.- 2.2.3 Terrestrial Solar Radiation.- 2.2.4 Beam Radiation and Clouds.- 2.2.5 Diffuse and Global Radiation.- 2.2.6 Spectral Direct and Diffuse Radiation.- 2.3 Thermodynamic Quality of Solar Radiation.- 2.3.1 Measure of Quality.- 2.3.2 Quality of Radiation.- 2.3.3 Standard Spectra.- 2.3.4 Quality of Solar Irradiance.- 2.4 Concentration of Radiation.- 2.5 Conversion to Heat.- 2.5.1 Process Heat and Concentrated Radiation.- 2.5.2 Selective Absorption-Transmission.- 2.5.3 Yield of Process Heat.- 2.5.4 Simultaneous Concentration and Selective Absorption.- 2.6 Conversion of Radiation to Electrical Energy.- 2.6.1 Photoionization.- 2.6.2 Photovoltaics.- 2.6.3 Ideal Photocell.- 2.6.4 Ideal Solar Cell Equation.- 2.6.5 Parameters of Solar Cells.- 2.6.6 Maximum Photovoltaic Efficiencies.- 2.6.7 Spectral Matching of Solar Cell Devices.- 2.6.8 Tandem Solar Cells.- 2.7 Photochemical Conversion.- 2.7.1 Equation of Ideal Photochemical Processes.- 2.7.2 Maximum Yield in Photochemical Processes.- 2.7.3 hv-, eV-, and kT- Reaction Paths.- 2.8 Appendix 1: Measurement of Solar Radiation.- 2.8.1 Introduction.- 2.8.2 Basic Quantities and Instrumentation.- 2.8.3 Detectors, Windows, Filters.- 2.8.4 Description of Instruments.- 2.9 Appendix 2: Frequently Used Symbols.- 3 Concentrator Optics.- 3.1 Introduction.- 3.2 Basic Optics.- 3.3 Concentration Optics.- 3.3.1 Concepts of Concentrator Optics.- 3.3.2 Solar and Circumsolar Brightness Distribution - Sunshape.- 3.3.3 The Degraded Sun.- 3.3.4 The Error Function for the Concentrator.- 3.3.5 Flux Density and Concentration.- 3.3.6 Cassegranian Optics.- 3.4 Ideal Concentrators.- 3.4.1 Conceptual Framework.- 3.4.2 Compound Parabolic Concentrator.- 3.4.3 Flow-line or Trumpet Concentrators.- 3.4.4 Conical Flux Density Redirector.- 3.5 Parabolic Geometries.- 3.5.1 General Considerations.- 3.5.2 Geometric Concentration Ratio.- 3.5.3 Local Concentration Ratio: Flux Density Distribution.- 3.5.4 The Iso-Intensity Problem.- 3.6 Other Concentrating Geometries.- 3.6.1 Introduction.- 3.6.2 The Hemispherical Bowl Concentrator.- 3.6.3 The Line Focus Fixed Mirror Collector.- 3.6.4 Tracking Facet Distributed Receiver Systems.- 3.6.5 Fresnel Reflectors.- 3.6.6 Fresnel Lenses.- 3.6.7 Other Optical Configurations.- 3.7 Central Receivers.- 3.7.1 Introduction.- 3.7.2 Scaling Relationships.- 3.7.3 Shading and Blocking Calculations.- 3.7.4 Flux Density Distribution at the Receiver.- 3.8 Design Issues and Constraints.- 3.8.1 Preliminary System Level Considerations.- 3.8.2 System Optimization.- 3.8.3 System Performance.- 3.8.4 Layout.- 3.9 System Sizing.- 3.10 Appendix: Frequently Used Symbols.- 4 Aspects of Solar Power Plant Engineering.- 4.1 Introduction.- 4.2 Solar and Conventional Power Plants: Similarities and Differences.- 4.3 Engineering Aspects.- 4.3.1 Collection.- 4.3.2 Energy Conversion.- 4.3.3 Characterization and Physical Properties of Solar Power Plants.- 4.4 Design Aspects.- 4.4.1 Terminology.- 4.4.2 Factors Influencing Power and Energy Performance.- 4.4.3 Design Objectives.- 4.4.4 Design Process and Parameters.- 5 Thermal Receivers.- 5.1 Introduction.- 5.2 Principles and Concepts for Energy Transfer.- 5.3 Thermal and Thermodynamic Basis for Receiver Design.- 5.4 Physical Interactions.- 5.5 Engineering Methods of Computation.- 5.6 Receiver Designs.- 5.6.1 Tube Receiver Concept (Central Receiver).- 5.6.2 Tube Receiver Concept (Parabolic Trough).- 5.6.3 Volumetric Receiver Concept.- 5.6.4 Direct Absorption Receiver Concept.- 5.7 Relationships Between Design and Type of Application.- 5.8 Status and Prospects.- 5.9 Measurement Techniques.- 5.10 Receiver Loss Calculation Examples.- 5.11 Appendix: Frequently Used Terms.- 6 Thermal Storage for Solar Power Plants.- 6.1 Impact of Storage on Solar Power Plants.- 6.1.1 Capacity Factor and Solar Multiple.- 6.1.2 Optimization of Solar Multiple and Storage Capacity.- 6.2 Media for Thermal Storage.- 6.2.1 Sensible Heat Storage Media.- 6.2.2 Latent Heat Storage Media.- 6.2.3 Chemical Storage Media.- 6.2.4 Single Versus Dual Medium Concepts.- 6.3 State-of-the-art of Thermal Storage for Solar Power Plants.- 6.3.1 Thermal Storage for Oil-Cooled Solar Plants.- 6.3.2 Thermal Storage for Steam-Cooled Solar Plants.- 6.3.3 Thermal Storage for Molten Salt-Cooled Solar Plants.- 6.3.4 Thermal Storage for Sodium-Cooled Solar Plants.- 6.3.5 Thermal Storage for Gas-Cooled Solar Plants.- 6.4 Appendix: Frequently Used Symbols.- 7 Thermal Solar Power Plants Experience.- 7.1 Introduction.- 7.2 Farm Solar Power Plants with Line-Focussing Collectors.- 7.2.1 Plant Configurations.- 7.2.2 System Examples.- 7.2.3 Collector Subsystem.- 7.2.4 Plant Performance Characteristics.- 7.2.5 Technical and Operational Potential.- 7.3 Farm Solar Power Plants with Point-Focussing Collectors.- 7.3.1 Plant Configurations.- 7.3.2 System Examples.- 7.3.3 Plant Performance Characteristics.- 7.3.4 Technological and Operational Potential.- 7.4 Central Receiver Solar Power Plants with Heliostat Fields.- 7.4.1 Plant Configurations.- 7.4.2 System Examples.- 7.4.3 Heliostat and Heliostat Field.- 7.4.4 Plant Performance.- 7.4.5 Plant Performance Characteristics.- 7.4.6 Technological and Operational Potential.- 7.5 Individual Dish Solar Power Plants.- 7.5.1 Configuration and Technology.- 7.5.2 Dish/Stirling Examples.- 7.5.3 Plant Performance.- 7.5.4 Plant Characteristics.- 7.5.5 Technological and Operational Potential.- 7.6 Comparison of Thermal Solar Power Plants.- 7.6.1 Performance Comparison.- 7.6.2 Long-term Operating Histories.- 7.7 Test Sites for Solar-Thermal R&D.- 7.8 Thermal Solar Power Plant Modelling and Calculation Codes.- 7.8.1 Performance Models.- 7.8.2 Economic Analysis Models.- 7.9 Appendix: Solar Thermal Facility Data.- 8 Photovoltaic Power Stations.- 8.1 Introduction.- 8.2 Technical Aspects of Solar Cells.- 8.2.1 IV-Characteristic of Solar Cells.- 8.2.2 Temperature Effects.- 8.2.3 Radiation Absorption and Material Selection.- 8.2.4 Tandem Systems.- 8.3 Status of Solar Cell Development.- 8.3.1 Crystalline Silicon Solar Cells.- 8.3.2 Amorphous Silicon Thin Film Solar Cells.- 8.3.3 Polycrystalline Thin Film Solar Cells.- 8.3.4 Concentrator Cells.- 8.3.5 Tandem Solar Cells.- 8.4 Photovoltaic Modules.- 8.4.1 Status of Non-Concentrator Module Technology.- 8.4.2 Module Design and Interconnection of Cells.- 8.5 Power Conditioning Systems.- 8.5.1 DC-DC Converter, Maximum-Power-Point Tracking.- 8.5.2 DC-AC Inverter.- 8.5.3 Batteries and Charge Regulators.- 8.6 Supporting Structures.- 8.6.1 Basic Design Considerations.- 8.6.2 Review of Selected Support Structures.- 8.6.3 Support Structures for Tracking Arrays.- 8.7 Tracking and Concentrating Systems.- 8.7.1 Fresnel Modules.- 8.7.2 V-Trough Concentrator.- 8.7.3 Parabolic Geometries.- 8.7.4 Further Concentrator Concepts.- 8.7.5 Perspectives of Tracking and Concentrating Systems.- 8.8 Design Considerations for Grid-Connected Power Plants.- 8.8.1 Site and System Selection.- 8.8.2 Electrical Circuit Design Aspects.- 8.8.3 Plant Monitoring.- 8.9 PV Plant Operating Experience.- 8.9.1 The Experience Base.- 8.9.2 Operating Experience.- 8.9.3 Summary and Conclusions.- 8.10 Photovoltaic Solar Systems Modelling and Calculation Codes.- 8.11 Appendix: Frequently Used Symbols.- 8.12 Appendix: Photovoltaic Facility Data.- 9 Solar Fuels and Chemicals, Solar Hydrogen.- 9.1 Introduction.- 9.2 Endothermal Chemical Processes Coupled with Solar Energy.- 9.3 Receiver-Reactors for Solar Chemical Applications.- 9.4 High Temperature Processes for Fuels and Chemicals Production.- 9.5 Additional Chemical Processing Using Solar Energy.- 9.6 Steam/Carbondioxide Reforming of Methane - A Candidate Process.- 9.7 High Temperature Processes by Direct Absorption of Solar Radiation.- 9.8 Electrolytic Production of Hydrogen with Photovoltaic and Solar Thermal Power Plants.- 9.8.1 Electrolytic Production of Hydrogen with Photovoltaic Systems.- 9.8.2 Electrolytic Production of Hydrogen with Thermal Solar Power Plants.- 10 Cost Analysis of Solar Power Plants.- 10.1 SPP Technologies in Comparison.- 10.2 Investment, Operating and Maintenance Cost.- 10.2.1 Parabolic Trough Solar Power Plants.- 10.2.2 Central Receiver (Tower) Solar Power Plants.- 10.2.3 Dish/Stirling Units.- 10.2.4 Photovoltaic Solar Power Plants.- 10.3 Power Plant Cost Analysis and Comparison.- 10.3.1 Conventional Power Plant Generating Costs.- 10.3.2 Solar Power Plant Generating Costs.- 10.3.3 Sensitivity Analysis of SPP Generating Costs.- 10.3.4 Social Costs.- 10.4 Market Considerations.- 10.4.1 Introduction.- 10.4.2 Costs.- 10.4.3 Value.- 10.4.4 Financing.- 10.4.5 Risk.- 10.4.6 Market Potential and Outlook.- Appendix A: Glossary of Terms.- A.1 Solar Resource Terminology.- A.2 Solar Thermal Terminology.- A.3 Photovoltaic Terminology.- A.4 Financial Terminology.- Appendix B: Abbreviations and Acronyms.- B.1 Radiation, Solar.- B.2 Thermal.- B.3 Photovoltaic.- B.4 Cost/Economic.- B.5 Acronyms._x000D_ show more



    Book Successfully Added To Your Cart